2 resultados para Handcrafted rockets
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We report a series of 16 consecutive total knee arthroplasty (TKA) revision procedures for deep infection, treated with a newly developed intraoperatively moulded PMMA cement-prostheses-like spacer (CPLS). The standard treatment consisted of a two-stage protocol with initial explantation of the infected components combined with radical debridement, followed by implantation of a temporary cement spacer and final reimplantation of a new TKA. A sterilizeable Teflon tapered aluminium mould was developed for production of a custom made CPLS during the intervention. Stable implantation of the CPLS was achieved with a second cementation, allowing for correct alignment and ligament balancing. The spacer remained 3.5 months on average until reimplantation of a TKA occurred. At time of reimplantation, patients had an average KSS score of 84.44 points with an average flexion capacity of 102°. There was no recurrent infection during the study period of minimum 2 years. With this new technique, a low friction articulation with good stability, high comfort and a better range of motion compared to handcrafted spacers was achieved. The use of this spacer is a time sparing, cheap and convenient option in 2-stage TKA revision.
Resumo:
The Imager for Low Energetic Neutral Atoms test facility at the University of Bern was developed to investigate, characterize, and quantify physical processes on surfaces that are used to ionize neutral atoms before their analysis in neutral particle-sensing instruments designed for space research. The facility has contributed valuable knowledge of the interaction of ions with surfaces (e.g., fraction of ions scattered from surfaces and angular scattering distribution) and employs a novel measurement principle for the determination of secondary electron emission yields as a function of energy, angle of incidence, particle species, and sample surface for low particle energies. Only because of this test facility it was possible to successfully apply surface-science processes for the new detection technique for low-energetic neutral particles with energies below about 1 keV used in space applications. All successfully flown spectrometers for the detection of low-energetic neutrals based on the particle–surface interaction process use surfaces evaluated, tested, and calibrated in this facility. Many instruments placed on different spacecraft (e.g., Imager for Magnetopause-to-Aurora Global Exploration, Chandrayaan-1, Interstellar Boundary Explorer, etc.) have successfully used this technique.