16 resultados para Habitats limnético e litorâneo
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area.
Resumo:
Using results from four coupled global carbon cycle-climate models combined with in situ observations, we estimate the effects of future global warming and ocean acidification on potential habitats for tropical/subtropical and temperate coral communities in the seas around Japan. The suitability of coral habitats is classified on the basis of the currently observed regional ranges for temperature and saturation states with regard to aragonite (Ωarag). We find that, under the "business as usual" SRES A2 scenario, coral habitats are projected to expand northward by several hundred kilometers by the end of this century. At the same time, coral habitats are projected to become sandwiched between regions where the frequency of coral bleaching will increase, and regions where Ωarag will become too low to support sufficiently high calcification rates. As a result, the habitat suitable for tropical/subtropical corals around Japan may be reduced by half by the 2020s to 2030s, and is projected to disappear by the 2030s to 2040s. The habitat suitable for the temperate coral communities is also projected to decrease, although at a less pronounced rate, due to the higher tolerance of temperate corals for low Ωarag. Our study has two important caveats: first, it does not consider the potential adaptation of the coral communities, which would permit them to colonize habitats that are outside their current range. Second, it also does not consider whether or not coral communities can migrate quickly enough to actually occupy newly emerging habitats. As such, our results serve as a baseline for the assessment of the future evolution of coral habitats, but the consideration of important biological and ecological factors and feedbacks will be required to make more accurate projections.
Resumo:
Aim: Accumulating evidence indicates that species may be pre-adapted for invasion success in new ranges. In the light of increasing global nutrient accumulation, an important candidate pre-adaptation for invasiveness is the ability to grow in nutrient-rich habitats. Therefore we tested whether globally invasive species originating from Central Europe have come from more productive rather than less productive habitats. A further important candidate pre-adaptation for invasiveness is large niche width. Therefore, we also tested whether species able to grow across habitats with a wider range of productivity are more invasive. Location: Global with respect to invasiveness, and Central European with respect to origin of study species. Methods We examined whether average habitat productivity and its width across habitats are significant predictors of the success of Central European species as aliens and as weeds elsewhere in the world based on data in the Global Compendium of Weeds. The two habitat productivity measures were derived from nutrient indicator values (after Ellenberg) of accompanying species present in vegetation records of the comprehensive Czech National Phytosociological Database. In the analyses, we accounted for phylogenetic relatedness among species and for size of the native distribution ranges. Results: Species from more productive habitats and with a wider native habitat-productivity niche in Central Europe have higher alien success elsewhere in the world. Weediness of species increased with mean habitat productivity. Niche width was also an important determinant of weediness for species with their main occurrence in nutrient-poor habitats, but not for those from nutrient-rich habitats. Main conclusions: Our results indicate that Central European plant species from productive habitats and those species from nutrient-poor habitat with wide productivity-niche are pre-adapted to become invasive. These results suggest that the world-wide invasion success of many Central European species is likely to have been promoted by the global increase of resource-rich habitats.
Resumo:
1. The acceptance of reserves as a useful management strategy relies on evidence of their effectiveness in preserving stocks of harvested species and conserving biodiversity. A history of ad hoc decisions in terrestrial and marine protected area planning has meant that many of these areas are contributing inefficiently to conservation goals. The conservation value of existing protected areas should be assessed when planning the placement of additional areas in a reserve network. 2. This study tested (1) the effectiveness of protection for intertidal molluscs of a marine reserve (Bouddi Marine Extension, NSW, Australia) established in 1971, and (2) the contribution of the protected area to the conservation of regional species, assemblages, and habitats. 3. The shell length and population density of one harvested (Cellana tramoserica), and three non-harvested species (Bembicium nanum, Morula marginalba, Nerita atramentosa) of intertidal molluscs were examined in the protected area and two reference locations over two seasons. 4. The heavily collected limpet C. tramoserica was significantly larger in the protected area and was the only species to exhibit a significant difference. No species significantly differed in population density between the protected area and reference locations. 5. Temporally replicated surveys of macro-molluscs at 21 locations over 75km of coastline identified that the existing protected area included 50% of species, two of five assemblage types and 19 of 20 intertidal rocky shore habitats surveyed in the study region. Reservation of a further three rocky reefs would protect a large proportion of species (71%), a representative of each assemblage and all habitat types. 6. Despite originally being selected in the absence of information on regional biodiversity, the protected area is today an effective starting point for expansion to a regional network of intertidal protected areas.
Resumo:
Several of the surviving haplochromine species have been recorded in habitats of different water transparencies within the Mwanza Gulf. Sampling for the haplochromines was carried out in muddy, rocky, sandy and vegetated habitats. All of the recorded species had been reported previously. Fewer species were encountered than previously reported in the same sampling stations. There was evidence for positive correlation between species richness and water transparency that was reinforced with data on ecological differentiation. Further exploration and conservation measures of diversity have been suggested for Lake Victoria haplochromines.