6 resultados para HYDROQUINONE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the crystal structure of the title compound (systematic name: 2,3-dichlorobenzene-1,4-diol 2,3-dichlorocyclohexa-2,5-diene-1,4-dione monohydrate), C(6)H(4)Cl(2)O(2)center dot C(6)H(2)Cl(2)O(2)center dot H(2)O, the 2,3-dichloro-1,4-hydroquinone donor (D) and the 2,3-dichloro-1,4-benzoquinone acceptor (A) molecules form alternating stacks along [100]. Their molecular planes [maximum deviations for non-H atoms: 0.0133 (14) (D) and 0.0763 (14) angstrom (A)] are inclined to one another by 1.45 (3)degrees and are thus almost parallel. There are pi-pi interactions involving the D and A molecules, with centroid-centroid distances of 3.5043 (9) and 3.9548 (9) angstrom. Intermolecular O-H center dot center dot center dot O hydrogen bonds involving the water molecule and the hydroxy and ketone groups lead to the formation of two-dimensional networks lying parallel to (001). These networks are linked by C-H center dot center dot center dot O interactions, forming a three-dimensional structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries, yet its pathophysiology is incompletely understood. Small-molecule metabolite screens may offer new insights into disease mechanisms and reveal new treatment targets. Methods Discovery (N = 33) and replication (N = 66) of liver biopsies spanning the range from normal liver histology to non-alcoholic steatohepatitis (NASH) were ascertained ensuring rapid freezing under 30 s in patients. 252 metabolites were assessed using GC/MS. Replicated metabolites were evaluated in a murine high-fat diet model of NAFLD. Results In a two-stage metabolic screening, hydroquinone (HQ, pcombined = 3.0 × 10−4) and nicotinic acid (NA, pcombined = 3.9 × 10−9) were inversely correlated with histological NAFLD severity. A murine high-fat diet model of NAFLD demonstrated a protective effect of these two substances against NAFLD: Supplementation with 1% HQ reduced only liver steatosis, whereas 0.6% NA reduced both liver fat content and serum transaminase levels and induced a complex regulatory network of genes linked to NALFD pathogenesis in a global expression pathway analysis. Human nutritional intake of NA equivalent was also consistent with a protective effect of NA against NASH progression. Conclusion This first small-molecular screen of human liver tissue identified two replicated protective metabolites. Either the use of NA or targeting its regulatory pathways might be explored to treat or prevent human NAFLD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate how redox control of intra-molecular quantum interference in phase-coherent molecular wires can be used to enhance the thermopower (Seebeck coefficient) S and thermoelectric figure of merit ZT of single molecules attached to nanogap electrodes. Using first principles theory, we study the thermoelectric properties of a family of nine molecules, which consist of dithiol-terminated oligo (phenylene-ethynylenes) (OPEs) containing various central units. Uniquely, one molecule of this family possesses a conjugated acene-based central backbone attached via triple bonds to terminal sulfur atoms bound to gold electrodes and incorporates a fully conjugated hydroquinonecentral unit. We demonstrate that both S and the electronic contribution Z el T to the figure of merit ZT can be dramatically enhanced by oxidizing the hydroquinone to yield a second molecule, which possesses a cross-conjugated anthraquinone central unit. This enhancement originates from the conversion of the pi-conjugation in the former to cross-conjugation in the latter, which promotes the appearance of a sharp anti-resonance at the Fermi energy. Comparison with thermoelectric properties of the remaining seven conjugated molecules demonstrates that such large values of S and Z el T are unprecedented. We also evaluate the phonon contribution to the thermal conductance, which allows us to compute the full figure of merit ZT = Z el T/(1 + κ p/κ el), where κ p is the phonon contribution to the thermal conductance and κ el is the electronic contribution. For unstructured gold electrodes, κ p/κ el Gt⃒ 1 and therefore strategies to reduce κ p are needed to realize the highest possible figure of merit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments.