76 resultados para HUMAN PLASMA KALLIKREIN
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A liquid chromatographic-mass spectrometric assay with atmospheric pressure chemical ionization for quantification of ondansetron and its main metabolite 8-hydroxyondansetron in human plasma was presented. The enantiomeric separation was achieved on a Chiralcel OD-R column containing cellulose tris-(3,5-dimethylphenylcarbamate). The validation data were within the required limits. The assay was successfully applied to authentic plasma samples. Quantitative results from postoperative patients receiving ondansetron demonstrated a great interindividual variability in postoperative plasma drug concentrations, the metabolites were not detected in their unconjugated form. A wide variation in the S-(+)-/R-(-)-ondansetron concentration ratio between 0.14 and 7.18 is indicative for a stereoselective disposition or metabolism. In further studies CYP2D6 and CYP3A4 genotype dependent metabolism of ondansetron enantiomers as well as of co-administered drugs and clinical efficacy of the medication should be tested.
Resumo:
The chemotherapeutic drug 5-fluorouracil (5-FU) is widely used for treating solid tumors. Response to 5-FU treatment is variable with 10-30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6-dihydrouracil (UH(2) ), and analogously, 5-FU into 5-fluoro-5,6-dihydrouracil (5-FUH(2) ). Combined quantification of U and UH(2) with 5-FU and 5-FUH(2) may provide a pre-therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography-tandem mass spectrometry assay for simultaneous quantification of U, UH(2) , 5-FU and 5-FUH(2) in human plasma. Samples were prepared by liquid-liquid extraction with 10:1 ethyl acetate-2-propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC(18) column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01-10 μm for U, 0.1-10 μm for UH(2) , 0.1-75 μm for 5-FU and 0.75-75 μm for 5-FUH(2) , covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5-FU-treated colorectal cancer patients. The present method merges the analysis of 5-FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5-FU-based chemotherapy.
Resumo:
A new approach for the determination of free and total valproic acid in small samples of 140 μL human plasma based on capillary electrophoresis with contactless conductivity detection is proposed. A dispersive liquid-liquid microextraction technique was employed in order to remove biological matrices prior to instrumental analysis. The free valproic acid was determined by isolating free valproic acid from protein-bound valproic acid by ultrafiltration under centrifugation of 100 μL sample. The filtrate was acidified to turn valproic acid into its protonated neutral form and then extracted. The determination of total valproic acid was carried out by acidifying 40 μL untreated plasma to release the protein-bound valproic acid prior to extraction. A solution consisting of 10 mM histidine, 10 mM 3-(N-morpholino)propanesulfonic acid and 10 μM hexadecyltrimethylammonium bromide of pH 6.5 was used as background electrolyte for the electrophoretic separation. The method showed good linearity in the range of 0.4-300 μg/mL with a correlation coefficient of 0.9996. The limit of detection was 0.08 μg/mL, and the reproducibility of the peak area was excellent (RSD=0.7-3.5%, n=3, for the concentration range from 1 to 150 μg/mL). The results for the free and total valproic acid concentration in human plasma were found to be comparable to those obtained with a standard immunoassay. The corresponding correlation coefficients were 0.9847 for free and 0.9521 for total valproic acid.
Resumo:
This paper presents a comparative proteomic analysis of human maternal plasma and amniotic fluid (AF) samples from the same patient at term of pregnancy in order to find specific AF proteins as markers of premature rupture of membranes, a complication frequently observed during pregnancy. Maternal plasma and the corresponding AF were immunodepleted in order to remove the six most abundant proteins before the systematic analysis of their protein composition. The protein samples were then fractionated by IEF Off-Gel electrophoresis (OGE), digested and analyzed with nano-LC-MS/MS separation, revealing a total of 73 and 69 proteins identified in maternal plasma and AF samples, respectively. The proteins identified in AF have been compared to those identified in the mother plasma as well as to the reference human plasma protein list reported by Anderson et al. (Mol. Cell. Proteomics 2004, 3, 311-326). This comparison showed that 26 proteins were exclusively present in AF and not in plasma among which 10 have already been described to be placenta or pregnancy specific. As a further validation of the method, plasma proteins fractionated by OGE and analysed by nano-LC-MS/MS have been compared to the Swiss 2-D PAGE reference map by reconstructing a map that matches 2-D gel and OGE experimental data. This representation shows that 36 of 49 reference proteins could be identified in both data sets, and that isoform shifts in pI are well conserved in the OGE data sets.
Resumo:
A method using gas chromatography-mass spectrometry (GC-MS) and solid-phase extraction (SPE) was developed for the determination of ajulemic acid (AJA), a non-psychoactive synthetic cannabinoid with interesting therapeutic potential, in human plasma. When using two calibration graphs, the assay linearity ranged from 10 to 750 ng/ml, and 750 to 3000 ng/ml AJA. The intra- and inter-day precision (R.S.D., %), assessed across the linear ranges of the assay, was between 1.5 and 7.0, and 3.6 and 7.9, respectively. The limit of quantitation (LOQ) was 10 ng/ml. The amount of AJA glucuronide was determined by calculating the difference in the AJA concentration before ("free AJA") and after enzymatic hydrolysis ("total AJA"). The present method was used within a clinical study on 21 patients suffering from neuropathic pain with hyperalgesia and allodynia. For example, plasma levels of 599.4+/-37.2 ng/ml (mean+/-R.S.D., n=9) AJA were obtained for samples taken 2 h after the administration of an oral dose of 20 mg AJA. The mean AJA glucuronide concentration at 2h was 63.8+/-127.9 ng/ml.
Resumo:
Lipoproteins are a heterogeneous population of blood plasma particles composed of apolipoproteins and lipids. Lipoproteins transport exogenous and endogenous triglycerides and cholesterol from sites of absorption and formation to sites of storage and usage. Three major classes of lipoproteins are distinguished according to their density: high-density (HDL), low-density (LDL) and very low-density lipoproteins (VLDL). While HDLs contain mainly apolipoproteins of lower molecular weight, the two other classes contain apolipoprotein B and apolipoprotein (a) together with triglycerides and cholesterol. HDL concentrations were found to be inversely related to coronary heart disease and LDL/VLDL concentrations directly related. Although many studies have been published in this area, few have concentrated on the exact protein composition of lipoprotein particles. Lipoproteins were separated by density gradient ultracentrifugation into different subclasses. Native gel electrophoresis revealed different gel migration behaviour of the particles, with less dense particles having higher apparent hydrodynamic radii than denser particles. Apolipoprotein composition profiles were measured by matrix-assisted laser desorption/ionization-mass spectrometry on a macromizer instrument, equipped with the recently introduced cryodetector technology, and revealed differences in apolipoprotein composition between HDL subclasses. By combining these profiles with protein identifications from native and denaturing polyacrylamide gels by liquid chromatography-tandem mass spectrometry, we characterized comprehensively the exact protein composition of different lipoprotein particles. We concluded that the differential display of protein weight information acquired by macromizer mass spectrometry is an excellent tool for revealing structural variations of different lipoprotein particles, and hence the foundation is laid for the screening of cardiovascular disease risk factors associated with lipoproteins.
Resumo:
Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated. Analytes were extracted using acetonitrile precipitation followed by solid phase extraction. Separations were performed by UFLC using a C18 column and analyzed on a triple quadrupole MS with electron spray ionization. Analytes were run first in negative mode and, subsequently, in positive mode in two independent LC-MS/MS runs. For each analyte, two MRM transitions were collected in order to confirm identity. All analytes showed good linearity over the investigated concentration range (r>0.98). Validated LLOQs ranged from 0.1 to 190ng/mL and LODs ranged from 0.04 to 12.3ng/mL. Our data show that this LC-MS/MS method is suitable for the quantification of a diverse set of bioactive lipids in plasma from human donors (n=32). The determined plasma levels are in agreement with the literature, thus providing a versatile method to explore pathophysiological processes in which changes of these lipids are implicated.
Resumo:
The micellar electrokinetic capillary chromatography (MEKC) separation and analysis of voriconazole and UK 115794 (internal standard) were examined and an assay for determination of voriconazole in human plasma and serum was developed. The MEKC medium comprises a 2:15 (v/v) mixture of methanol and a pH 9.3 buffer composed of 5mM Na(2)B(4)O(7), 7 mM Na(2)HPO(4) and 54 mM SDS. Sample preparation is based upon liquid/liquid extraction with ethylacetate and dichloromethane (75%/25%) at physiological pH. Using this approach with 250 microl serum or plasma and reconstitution of the dried extract into 100 microl of a buffer composed of 0.5mM Na(2)B(4)O(7) and 0.7 mM Na(2)HPO(4) (pH 9.3), the detection and quantitation limits were determined to be 0.1 and 0.2 microg/ml, respectively, a sensitivity that is suitable for therapeutic drug monitoring of voriconazole (provisional therapeutic range: 1-6 microg/ml) in human plasma and serum samples. The method was validated and compared to an HPLC method, showing excellent agreement between the two for a set of 91 samples that stemmed from patients being treated with voriconazole. The MEKC assay is also demonstrated to be suitable to explore pharmacokinetic data of voriconazole.
Resumo:
A global metabolic profiling methodology based on gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) for human plasma was applied to a human exercise study focused on the effects of beverages containing glucose, galactose, or fructose taken after exercise and throughout a recovery period of 6 h and 45 min. One group of 10 well trained male cyclists performed 3 experimental sessions on separate days (randomized, single center). After performing a standardized depletion protocol on a bicycle, subjects consumed one of three different beverages: maltodextrin (MD)+glucose (2:1 ratio), MD+galactose (2:1), and MD+fructose (2:1), consumed at an average of 1.25 g of carbohydrate (CHO) ingested per minute. Blood was taken straight after exercise and every 45 min within the recovery phase. With the resulting blood plasma, insulin, free fatty acid (FFA) profile, glucose, and GC-TOFMS global metabolic profiling measurements were performed. The resulting profiling data was able to match the results obtained from the other clinical measurements with the addition of being able to follow many different metabolites throughout the recovery period. The data quality was assessed, with all the labelled internal standards yielding values of <15% CV for all samples (n=335), apart from the labelled sucrose which gave a value of 15.19%. Differences between recovery treatments including the appearance of galactonic acid from the galactose based beverage were also highlighted.
Resumo:
Meprin and , zinc metalloproteinases, play significant roles in inflammation, including inflammatory bowel disease (IBD), possibly by activating cytokines, like interleukin 1 , interleukin 18, or tumor growth factor . Although a number of potential activators for meprins are known, no endogenous inhibitors have been identified. In this work, we analyzed the inhibitory potential of human plasma and identified bovine fetuin-A as an endogenous meprin inhibitor with a K(i) (inhibition constant) of 4.2 × 10(-5) M for meprin and a K(i) of 1.1 × 10(-6) M meprin . This correlated with data obtained for a fetuin-A homologue from carp (nephrosin inhibitor) that revealed a potent meprin and inhibition (residual activities of 27 and 22%, respectively) at a carp fetuin concentration of 1.5 × 10(-6) M. Human fetuin-A is a negative acute phase protein involved in inflammatory diseases, thus being a potential physiological regulator of meprin activity. We report kinetic studies of fetuin-A with the proteolytic enzymes astacin, LAST, LAST_MAM, trypsin, and chymotrypsin, indeed demonstrating that fetuin-A is a broad-range protease inhibitor. Fetuin-A inhibition of meprin activity was 40 times weaker than that of meprin activity. Therefore, we tested cystatin C, a protein structurally closely related to fetuin-A. Indeed, cystatin C was an inhibitor for human meprin (K(i) = 8.5 × 10(-6) M) but, interestingly, not for meprin . Thus, the identification of fetuin-A and cystatin C as endogenous proteolytic regulators of meprin activity broadens our understanding of the proteolytic network in plasma.
Resumo:
The terminal homologation by CH(2) insertion into the peptides mentioned in the title is described. This involves replacement of the N-terminal amino acid residue by a β(2) - and of the C-terminal amino acid residue by a β(3) -homo-amino acid moiety (β(2) hXaa and β(3) hXaa, resp.; Fig. 1). In this way, the structure of the peptide chain from the N-terminal to the C-terminal stereogenic center is identical, and the modified peptide is protected against cleavage by exopeptidases (Figs. 2 and 3). Neurotensin (NT; 1) and its C-terminal fragment NT(8-13) are ligands of the G-protein-coupled receptors (GPCR) NT1, NT2, NT3, and NT analogs are promising tools to be used in cancer diagnostics and therapy. The affinities of homologated NT analogs, 2b-2e, for NT1 and NT2 receptors were determined by using cell homogenates and tumor tissues (Table 1); in the latter experiments, the affinities for the NT1 receptor are more or less the same as those of NT (0.5-1.3 vs. 0.6 nM). At the same time, one of the homologated NT analogs, 2c, survives in human plasma for 7 days at 37° (Fig. 6). An NMR analysis of NT(8-13) (Tables 2 and 4, and Fig. 8) reveals that this N-terminal NT fragment folds to a turn in CD(3) OH. - In the case of the human analgesic opiorphin (3a), a pentapeptide, and of the HIV-derived B27-KK10 (4a), a decapeptide, terminal homologation (→3b and 4b, resp.) led to a 7- and 70-fold half-life increase in plasma (Fig. 9). With N-terminally homologated NPY, 5c, we were not able to determine serum stability; the peptide consisting of 36 amino acid residues is subject to cleavage by endopetidases. Three of the homologated compounds, 2b, 2c, and 5c, were shown to be agonists (Fig. 7 and 11). A comparison of terminal homologation with other stability-increasing terminal modifications of peptides is performed (Fig. 5), and possible applications of the neurotensin analogs, described herein, are discussed.
Resumo:
BACKGROUND The variant Creutzfeldt-Jakob disease incidence peaked a decade ago and has since declined. Based on epidemiologic evidence, the causative agent, pathogenic prion, has not constituted a tangible contamination threat to large-scale manufacturing of human plasma-derived proteins. Nonetheless, manufacturers have studied the prion removal capabilities of various manufacturing steps to better understand product safety. Collectively analyzing the results could reveal experimental reproducibility and detect trends and mechanisms driving prion removal. STUDY DESIGN AND METHODS Plasma Protein Therapeutics Association member companies collected more than 200 prion removal studies on plasma protein manufacturing steps, including precipitation, adsorption, chromatography, and filtration, as well as combined steps. The studies used a range of model spiking agents and bench-scale process replicas. The results were grouped based on key manufacturing variables to identify factors impacting removal. The log reduction values of a group are presented for comparison. RESULTS Overall prion removal capacities evaluated by independent groups were in good agreement. The removal capacity evaluated using biochemical assays was consistent with prion infectivity removal measured by animal bioassays. Similar reduction values were observed for a given step using various spiking agents, except highly purified prion protein in some circumstances. Comparison between combined and single-step studies revealed complementary or overlapping removal mechanisms. Steps with high removal capacities represent the conditions where the physiochemical differences between prions and therapeutic proteins are most significant. CONCLUSION The results support the intrinsic ability of certain plasma protein manufacturing steps to remove prions in case of an unlikely contamination, providing a safeguard to products.
Resumo:
Latex glycoprotein (LGP) from Synadenium grantii latex was purified by the combination of heat precipitation and gel permeation chromatography. LGP is a heat stable protein even at 80 degrees C showed a sharp single band both in SDS-PAGE as well as in native (acidic) PAGE. LGP is a monomeric protein appears as single band under reducing condition. It is a less hydrophobic protein showed sharp single peak in RP-HPLC with retention time of 13.3 m. The relative molecular mass of LGP is 34.4 kDa. CD spectrum of LGP explains less content of alpha-helix (7%), and high content of beta-pleated sheets (48%) and random coils (46%). The N-terminal sequence of LGP is D-F-P-S-D-W-Y-A-Y-E-G-Y-V-I-D-R-P-F-S. Purified LGP is a fibrinogen degrading protease hydrolyses all the three subunits in the order of Aalpha, Bbeta and gamma. The hydrolytic pattern is totally different from plasmin as well as thrombin. LGP reduces recalcification time from 165 to 30 s with citrated human plasma but did not show thrombin like as well as factor Xa-like activity. Although LGP induces procoagulant activity, it hydrolyses partially cross-linked fibrin clot. It hydrolyses all the subunits of partially cross-linked fibrin clot (alpha- chains, beta-chain and gamma-gamma dimer). LGP is a serine protease, inhibited by PMSF. Other serine protease inhibitors, aprotinin and leupeptin did not inhibit the caseinolytic activity as well as fibrinogenolytic activity. We report purification and characterization of a glycoprotein from Synadenium grantii latex with human fibrino(geno)lytic activity.
Resumo:
Gemcitabine (2'2'-difluorodeoxycytidine) is a pyrimidine analog used in the treatment of a variety of solid tumors. After intravenous (i.v.) administration, it is rapidly inactivated to 2'-deoxy-2',2'-difluorouridine (dFdU). A sensitive analytical method for the quantitation of gemcitabine is required for the assessment of alternative dosage and treatment schemes. A rapid and robust RP-HPLC assay for analysis of gemcitabine in human and animal plasma and serum was developed and validated using 2'-deoxyuridine (dU) and 5-fluoro-2'-deoxyuridine (5FdU) as internal standards. It is based on protein precipitation, the use of an Atlantis dC18 column of 100 mm length (inner diameter, 4.6 mm; particle size, 3 microm) and isocratic elution using a 10 mM phosphate buffer, pH 3.0, followed by isocratic elution with the same buffer containing 3% of ACN. For gemcitabine, RSD values for intraday and interday precision were < 4.4 and 5.3%, respectively, the LOQ was 20 ng/mL, and the assay was linear in the range of 0.020-20 microg/mL with an accuracy of > or =89%. The recovery for gemcitabine, dU and 5FdU was 86-98%. The assay was applied to determine gemcitabine levels in plasma samples of patients collected during and shortly after conventional infusion of 25-30 mg/kg body mass (levels: 2.0-18.9 microg/mL) and rats that received lower doses (1.5 mg/kg) via i.v., subcutaneous and oral drug administration (levels: 0.20-2.60 microg/mL). It could also be applied to estimate dFdU levels in human plasma.
Resumo:
The first step of coagulation factor XIII (FXIII) activation involves cleavage of the FXIII activation peptide (FXIII-AP) by thrombin. However, it is not known whether the FXIII-AP is released into plasma upon cleavage or remains attached to activated FXIII. The aim of the present work was to study the structure of free FXIII-AP, develop an assay for FXIII-AP determination in human plasma, and to answer the question whether FXIII-AP is released into plasma. We used ab-initio modeling and molecular dynamics simulations to study the structure of free FXIII-AP. We raised monoclonal and polyclonal antibodies against FXIII-AP and developed a highly sensitive and specific ELISA method for direct detection of FXIII-AP in human plasma. Structural analysis showed a putative different conformation of the free FXIII-AP compared to FXIII-AP bound to the FXIII protein. We concluded that it might be feasible to develop specific antibodies against the free FXIII-AP. Using our new FXIII-AP ELISA, we found high levels of FXIII-AP in in-vitro activated plasma samples and serum. We showed for the first time that FXIIIAP is detached from activated FXIII and is released into plasma, where it can be directly measured. Our findings may be of major clinical interest in regard to a possible new marker in thrombotic disease.