52 resultados para HLA C antigen
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
An estimated 2%-3% of the world's population is chronically infected with hepatitis C virus (HCV) and this is a major cause of liver disease worldwide. Following acute infection, outcome is variable with acute HCV successfully resolved in some individuals (20%-30%), but in the majority of cases the virus is able to persist. Co-infection with human immunodeficiency virus has been associated with a negative impact on the course of HCV infection. The host's immune response is an important correlate of HCV infection outcome and disease progression. Natural killer (NK) cells provide a major component of the antiviral immune response by recognising and killing virally infected cells. NK cells modulate their activity through a combination of inhibitory and activatory receptors such as the killer immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen (HLA) Class I molecules. In this workshop component, we addressed the influence of KIR genotypes and their HLA ligands on resolving HCV infection and we discuss the implications of the results of the study of Lopez-Vazquez et al. on KIR and HCV disease progression.
Resumo:
BACKGROUND & AIMS The interaction of KIR with their HLA ligands drives the activation and inhibition of natural killer (NK) cells. NK cells could be implicated in the development of liver fibrosis in chronic hepatitis C. METHODS We analysed 206 non-transplanted and 53 liver transplanted patients, selected according to their Metavir fibrosis stage. Several variables such as the number of activator KIR or the HLA ligands were considered in multinomial and logistic regression models. Possible confounding variables were also investigated. RESULTS The KIRs were not significant predictors of the fibrosis stage. Conversely, a significant reduction of the HLA-C1C2 genotype was observed in the most advanced fibrosis stage group (F4) in both cohorts. Furthermore, the progression rate of fibrosis was almost 10 times faster in the subgroup of patients after liver transplantation and HLA-C1C2 was significantly reduced in this cohort compared to non-transplanted patients. CONCLUSION This study suggests a possible role of KIR and their ligands in the development of liver damage. The absence of C1 and C2 ligands heterozygosity could lead to less inhibition of NK cells and a quicker progression to a high level of fibrosis in patients infected by HCV, especially following liver transplantation. This article is protected by copyright. All rights reserved.
Resumo:
OBJECTIVE Narcolepsy with cataplexy is tightly associated with the HLA class II allele DQB1*06:02. Evidence indicates a complex contribution of HLA class II genes to narcolepsy susceptibility with a recent independent association with HLA-DPB1. The cause of narcolepsy is supposed be an autoimmune attack against hypocretin-producing neurons. Despite the strong association with HLA class II, there is no evidence for CD4+ T-cell-mediated mechanism in narcolepsy. Since neurons express class I and not class II molecules, the final effector immune cells involved might include class I-restricted CD8+ T-cells. DESIGN HLA class I (A, B, and C) and II (DQB1) genotypes were analyzed in 944 European narcolepsy with cataplexy patients and in 4043 control subjects matched by country of origin. All patients and controls were DQB1*06:02 positive and class I associations were conditioned on DQB1 alleles. RESULTS HLA-A*11:01 (OR = 1.49 [1.18-1.87] P = 7.0*10-4), C*04:01 (OR = 1.34 [1.10-1.63] P = 3.23*10-3), and B*35:01 (OR=1.46 [1.13-1.89] P = 3.64*10-3) were associated with susceptibility to narcolepsy. Analysis of polymorphic class I amino-acids revealed even stronger associations with key antigen-binding residues HLA-A-Tyr9 (OR = 1.32 [1.15-1.52] P = 6.95*10-5) and HLA-C-Ser11 (OR=1.34 [1.15-1.57] P = 2.43*10-4). CONCLUSIONS Our findings provide a genetic basis for increased susceptibility to infectious factors or an immune cytotoxic mechanism in narcolepsy, potentially targeting hypocretin neurons.
Resumo:
Cellular immune responses are an important correlate of hepatitis C virus (HCV) infection outcome. These responses are governed by the host's human leukocyte antigen (HLA) type, and HLA-restricted viral escape mutants are a critical aspect of this host-virus interaction. We examined the driving forces of HCV evolution by characterizing the in vivo selective pressure(s) exerted on single amino acid residues within nonstructural protein 3 (NS3) by the HLA types present in two host populations. Associations between polymorphisms within NS3 and HLA class I alleles were assessed in 118 individuals from Western Australia and Switzerland with chronic hepatitis C infection, of whom 82 (69%) were coinfected with human immunodeficiency virus. The levels and locations of amino acid polymorphisms exhibited within NS3 were remarkably similar between the two cohorts and revealed regions under functional constraint and selective pressures. We identified specific HCV mutations within and flanking published epitopes with the correct HLA restriction and predicted escaped amino acid. Additional HLA-restricted mutations were identified that mark putative epitopes targeted by cell-mediated immune responses. This analysis of host-virus interaction reveals evidence of HCV adaptation to HLA class I-restricted immune pressure and identifies in vivo targets of cellular immune responses at the population level.
Resumo:
Many hepatitis C virus (HCV) infections worldwide are with the genotype 1 and 3 strains of the virus. Cellular immune responses are known to be important in the containment of HCV genotype 1 infection, and many genotype 1 T cell targets (epitopes) that are presented by host human leukocyte antigens (HLAs) have been identified. In contrast, there is almost no information known about the equivalent responses to genotype 3. Immune escape mechanisms used by HCV include the evolution of viral polymorphisms (adaptations) that abrogate this host-viral interaction. Evidence of HCV adaptation to HLA-restricted immune pressure on HCV can be observed at the population level as viral polymorphisms associated with specific HLA types. To evaluate the escape patterns of HCV genotypes 1 and 3, we assessed the associations between viral polymorphisms and specific HLA types from 187 individuals with genotype 1a and 136 individuals with genotype 3a infection. We identified 51 HLA-associated viral polymorphisms (32 for genotype 1a and 19 for genotype 3a). Of these putative viral adaptation sites, six fell within previously published epitopes. Only two HLA-associated viral polymorphisms were common to both genotypes. In the remaining sites with HLA-associated polymorphisms, there was either complete conservation or no significant HLA association with viral polymorphism in the alternative genotype. This study also highlights the diverse mechanisms by which viral evasion of immune responses may be achieved and the role of genotype variation in these processes. CONCLUSION: There is little overlap in HLA-associated polymorphisms in the nonstructural proteins of HCV for the two genotypes, implying differences in the cellular immune pressures acting on these viruses and different escape profiles. These findings have implications for future therapeutic strategies to combat HCV infection, including vaccine design.
Resumo:
BACKGROUND.: Urine is a potentially rich source of biomarkers for monitoring kidney dysfunction. In this study, we have investigated the potential of soluble human leukocyte antigen (sHLA)-DR in the urine for noninvasive monitoring of renal transplant patients. METHODS.: Urinary soluble HLA-DR levels were measured by sandwich enzyme-linked immunosorbent assay in 103 patients with renal diseases or after renal transplantation. sHLA-DR in urine was characterized by Western blotting and mass spectrometry. RESULTS.: Acute graft rejection was associated with a significantly elevated level of urinary sHLA-DR (P<0.0001), compared with recipients with stable graft function or healthy individuals. A receiver operating characteristic curve analysis showed the area under the curve to be 0.88 (P<0.001). At a selected threshold, the sensitivity was 80% and specificity was 98% for detection of acute renal transplant rejection. sHLA-DR was not exosomally associated and was of lower molecular weight compared with the HLA-DR expressed as heterodimer on the plasma membrane of antigen-presenting cells. CONCLUSIONS.: sHLA-DR excreted into urine is a promising indicator of renal transplant rejection.
Resumo:
The host's immune response to hepatitis C virus (HCV) can result in the selection of characteristic mutations (adaptations) that enable the virus to escape this response. The ability of the virus to mutate at these sites is dependent on the incoming virus, the fitness cost incurred by the mutation, and the benefit to the virus in escaping the response. Studies examining viral adaptation in chronic HCV infection have shown that these characteristic immune escape mutations can be observed at the population level as human leukocyte antigen (HLA)-specific viral polymorphisms. We examined 63 individuals with chronic HCV infection who were infected from a single HCV genotype 1b source. Our aim was to determine the extent to which the host's immune pressure affects HCV diversity and the ways in which the sequence of the incoming virus, including preexisting escape mutations, can influence subsequent mutations in recipients and infection outcomes. Conclusion: HCV sequences from these individuals revealed 29 significant associations between specific HLA types within the new hosts and variations within their viruses, which likely represent new viral adaptations. These associations did not overlap with previously reported adaptations for genotypes 1a and 3a and possibly reflected a combination of constraint due to the incoming virus and genetic distance between the strains. However, these sites accounted for only a portion of the sites in which viral diversity was observed in the new hosts. Furthermore, preexisting viral adaptations in the incoming (source) virus likely influenced the outcomes in the new hosts.
Resumo:
We assessed the influence of human leukocyte antigen (HLA) alleles HLA-Bw4 and HLA-Bw6 on CD4 T cell recovery after starting successful combination antiretroviral therapy in 265 individuals. The median gains in the CD4 T cell count after 4 years were 258 cells/microL for HLA-Bw4 homozygotes, 321 cells/microL for HLA-Bw4/Bw6 heterozygotes, and 363 cells/microL for HLA-Bw6 homozygotes (P = .01, compared with HLA-Bw4 homozygotes). HLA-Bw4 homozygosity appears to predict an impaired CD4 T cell recovery after initiation of combination antiretroviral therapy.
Resumo:
Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation.
Resumo:
The efficacy of specifically targeted anti-viral therapy for hepatitis C virus (HCV) (STAT-C), including HCV protease and polymerase inhibitors, is limited by the presence of drug-specific viral resistance mutations within the targeted proteins. Genetic diversity within these viral proteins also evolves under selective pressures provided by host human leukocyte antigen (HLA)-restricted immune responses, which may therefore influence STAT-C treatment response. Here, the prevalence of drug resistance mutations relevant to 27 developmental STAT-C drugs, and the potential for drug and immune selective pressures to intersect at sites along the HCV genome, is explored. HCV nonstructural (NS) 3 protease or NS5B polymerase sequences and HLA assignment were obtained from study populations from Australia, Switzerland, and the United Kingdom. Four hundred five treatment-naïve individuals with chronic HCV infection were considered (259 genotype 1, 146 genotype 3), of which 38.5% were coinfected with human immunodeficiency virus (HIV). We identified preexisting STAT-C drug resistance mutations in sequences from this large cohort. The frequency of the variations varied according to individual STAT-C drug and HCV genotype/subtype. Of individuals infected with subtype 1a, 21.5% exhibited genetic variation at a known drug resistance site. Furthermore, we identified areas in HCV protease and polymerase that are under both potential HLA-driven pressure and therapy selection and identified six HLA-associated polymorphisms (P
Resumo:
Background & Aims: HLA-B⁄27 is associated with spontaneous HCV genotype 1 clearance. HLA-B⁄27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B⁄27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B⁄27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. Methods: Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B⁄27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B⁄27:02 and 05. Results: The NS5B2820 epitope is only restricted by the HLA-B⁄27 subtype HLA-B⁄27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B⁄27 subtype B⁄27:05. Indeed, the epitope is very dominant in HLA-B⁄27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B⁄27:02+ chronically infected patients. Conclusions: The NS5B2820 epitope is immunodominant in the context of HLA-B⁄27:02, but is not restricted by other HLA-B⁄27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines.
Resumo:
The goal of this study was to determine the frequency of HLA class II antigen expression in colorectal carcinoma (CRC) tumors, its association with the clinical course of the disease, and the underlying mechanism(s). Two tissue microarrays constructed with 220 and 778 CRC tumors were stained with HLA-DR, DQ, and DP antigen-specific monoclonal antibody LGII-612.14, using the immunoperoxidase staining technique. The immunohistochemical staining results were correlated with the clinical course of the disease. The functional role of HLA class II antigens expressed on CRC cells was analyzed by investigating their in vitro interactions with immune cells. HLA class II antigens were expressed in about 25% of the 220 and 21% of the 778 tumors analyzed with an overall frequency of 23%. HLA class II antigens were detected in 19% of colorectal adenomas. Importantly, the percentage of stained cells and the staining intensity were significantly lower than those detected in CRC tumors. However, HLA class II antigen staining was weakly detected only in 5.4% of 37 normal mucosa tissues. HLA class II antigen expression was associated with a favorable clinical course of the disease. In vitro stimulation with interferon gamma (IFNγ) induced HLA class II antigen expression on two of the four CRC cell lines tested. HLA class II antigen expression on CRC cells triggered interleukin-1β (IL-1β) production by resting monocytes. HLA class II antigen expression in CRC tumors is a favorable prognostic marker. This association may reflect stimulation of IL-1β production by monocytes.