4 resultados para HIGH-DIELECTRIC-CONSTANT
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.
Resumo:
[1] A number of observations suggest that an extended ocean once covered a significant part of the Martian northern hemisphere. By probing the physical properties of the subsurface to unprecedented depth, the MARSIS/Mars Express provides new geophysical evidences for the former existence of a Late Hesperian ocean. The Vastitas Borealis formation, located inside a putative shoreline of the ancient ocean, has a low dielectric constant compared with that of typical volcanic materials. We show that the measured value is only consistent with low-density sedimentary deposits, massive deposits of ground-ice, or a combination of the two. In contrast, radar observations indicate a distribution of shallow ground ice in equilibrium with the atmosphere in the south polar region. We conclude that the northern plains are filled with remnants of a late Hesperian ocean, fed by water and sediments from the outflow channels about 3 Gy ago.
Resumo:
Apollinaris Mons is an isolated volcano on Mars straddling the boundary between the southern highlands and the northern plains. One of its most distinctive features is its massive fan-shaped deposit that extends from a breach on its summit to distances of more than 150 km and drapes its entire southern flank. The composition and formation mechanism of these deposits remains controversial. We investigate the radar properties of the fan deposits (FD) of Apollinaris Mons using low-frequency sounding radar data in combination with high-resolution images and crater-size frequency analysis to constrain their inner shape and bulk composition. Our analysis indicates that the FD attains an irregular thickness and is gradually thinner towards their lateral margins. The crater-size frequency analysis shows that they may have undergone repeated resurfacing, which is suggestive of long-term evolution. Our analysis of Shallow Radar (SHARAD) radargrams traversing different sections of the FD reveals multiple and different subsurface interfaces among the radargrams crossing the thinnest part, which suggests a layered and complex inner shape. Our estimates for the bulk real part of the dielectric constant of the FD ranges from 3 to 5, which is consistent with an icy-silicate mixture or pyroclastic composition. Therefore, we conclude that lahars or pyroclastic flows are the most likely mechanism that created the FD, yet we cannot rule out additional contributions from lava flows. A combination of multiple processes is also possible since the deposits appear to have been modified by fluvial processes at a later stage of their formation.