74 resultados para HD-tDCS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain lesions in the visual associative cortex are known to impair visual perception, i.e., the capacity to correctly perceive different aspects of the visual world, such as motion, color, or shapes. Visual perception can be influenced by non-invasive brain stimulation such as transcranial direct current stimulation (tDCS). In a recently developed technique called high definition (HD) tDCS, small HD-electrodes are used instead of the sponge electrodes in the conventional approach. This is believed to achieve high focality and precision over the target area. In this paper we tested the effects of cathodal and anodal HD-tDCS over the right V5 on motion and shape perception in a single blind, within-subject, sham controlled, cross-over trial. The purpose of the study was to prove the high focality of the stimulation only over the target area. Twenty one healthy volunteers received 20 min of 2 mA cathodal, anodal and sham stimulation over the right V5 and their performance on a visual test was recorded. The results showed significant improvement in motion perception in the left hemifield after cathodal HD-tDCS, but not in shape perception. Sham and anodal HD-tDCS did not affect performance. The specific effect of influencing performance of visual tasks by modulating the excitability of the neurons in the visual cortex might be explained by the complexity of perceptual information needed for the tasks. This provokes a "noisy" activation state of the encoding neuronal patterns. We speculate that in this case cathodal HD-tDCS may focus the correct perception by decreasing global excitation and thus diminishing the "noise" below threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excitatory anodal transcranial direct current stimulation (A-tDCS) over the left dorsal prefrontal cortex (DPFC) has been shown to improve language production. The present study examined neurophysiological underpinnings of this effect. In a single-blinded within-subject design, we traced effects of A-tDCS compared to sham stimulation over the left DPFC using electrophysiological and behavioural correlates during overt picture naming. Online effects were examined during A-tDCS by employing the semantic interference (SI-)Effect – a marker that denotes the functional integrity of the language system. The behavioural SI-Effect was found to be reduced, whereas the electrophysiological SI-Effect was enhanced over left compared to right temporal scalp-electrode sites. This modulation is suggested to reflect a superior tuning of neural responses within language-related generators. After -(offline) effects of A-tDCS were detected in the delta frequency band, a marker of neural inhibition. After A-tDCS there was a reduction in delta activity during picture naming and the resting state, interpreted to indicate neural disinhibition. Together, these findings demonstrate electrophysiological modulations induced by A-tDCS of the left DPFC. They suggest that A-tDCS is capable of enhancing neural processes during and after application. The present functional and oscillatory neural markers could detect positive effects of prefrontal A-tDCS, which could be of use in the neuro-rehabilitation of frontal language functions.