9 resultados para HALO

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a case of sonographic follow-up showing brightening of the diffuse circumferential thickening (halo) of the carotid artery wall (the so-called "macaroni sign") in a patient with decreasing inflammatory activity of Takayasu arteritis over a 6-month period. Sonographic follow-up in patients with Takayasu arteritis may be a useful complementary tool for evaluation of inflammatory activity. Besides a reduction of halo diameter, an increase in wall echogenicity appears to be a sign of decreasing inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of degenerative spinal disease subsequent to dystonic movement disorders has been neglected and has received more attention only recently. Spinal surgery is challenging with regard to continuous mechanical stress when treatment of the underlying movement disorder is insufficient. To characterize better the particular features of degenerative spinal disease in patients with dystonia and to analyze operative strategies, we reviewed the available published data. Epidemiologic studies reveal that degenerative spinal disorders in patients with dystonia and choreoathetosis occur much earlier than in the physiological aging process. Dystonic movement disorders more often affect the spine at higher cervical levels (C(2-5)), in contrast to spinal degeneration with age which manifests more frequently at the middle and lower cervical spine (C(5-7)). Degenerative changes of the cervical spine are more likely to occur on the side where the chin is rotated or tilted to. Various operative approaches for treatment of spinal pathologies have been advocated in patients with dystonic movement disorders. The available data do not allow making firm statements regarding the superiority of one approach over the other. Posterior approaches were first used for decompression, but additional anterior fusion became necessary in many instances. Anterior approaches with or without instrumented fusion yielded more favorable results, but drawbacks are pseudarthrosis and adjacent-level disease. Parallel to the development of posterior fusion techniques, circumferential surgery was suggested to provide a maximum degree of cord decompression and a higher fusion rate. Perioperative local injections of botulinum toxin were used initially to enhance patient comfort with halo immobilization, but they are also applied in patients without external fixation nowadays. Treatment algorithms directed at the underlying movement disorder itself, taking advantage of new techniques of functional neurosurgery, combined with spinal surgery have recently been introduced and show promising results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The implantation of a composite graft is the treatment of choice for patients with aortic root disease if the valve cannot be preserved and the patient is not a suitable candidate for a Ross procedure. Several years ago, the Shelhigh NR-2000C (Shelhigh, Inc, Millburn, NJ) was introduced in Europe. Being a totally biologic conduit and considering the lack of homografts, the graft seemed an ideal conduit for patients with destructive endocarditis, as well as for older patients who were not suitable candidates for oral anticoagulation. METHODS: From 2001 until 2006, the Shelhigh NR-2000C stentless valved conduit was implanted in 115 patients for various aortic root pathologies. The conduit consists of a bovine pericardial straight graft with an incorporated porcine stentless valve. Aortic root repair was performed during standard cardiopulmonary bypass and mild hypothermia in the majority of patients. Deep hypothermic circulatory arrest combined with selective antegrade cerebral perfusion was used when the repair extended into the arch. RESULTS: Seven patients with uncomplicated early outcome presented with unexpected sudden disastrous findings at the level of the aortic root, although 1-year follow-up computed tomographic scans were normal. Four of these patients underwent emergency operations because of desintegration of the graft, along with rupture of the aortic root. Retrospectively, the main findings were persistent fever or subfebrility over months and a halo-like enhancement on computed tomographic scans. Extensive microbiologic examinations were performed without finding a causative organism. CONCLUSION: The use of the Shelhigh aortic stentless conduit can no longer be advocated, and meticulous follow-up of patients in whom this device has been implanted has to be recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Neuronavigation has become an intrinsic part of preoperative surgical planning and surgical procedures. However, many surgeons have the impression that accuracy decreases during surgery. OBJECTIVE To quantify the decrease of neuronavigation accuracy and identify possible origins, we performed a retrospective quality-control study. METHODS Between April and July 2011, a neuronavigation system was used in conjunction with a specially prepared head holder in 55 consecutive patients. Two different neuronavigation systems were investigated separately. Coregistration was performed with laser-surface matching, paired-point matching using skin fiducials, anatomic landmarks, or bone screws. The initial target registration error (TRE1) was measured using the nasion as the anatomic landmark. Then, after draping and during surgery, the accuracy was checked at predefined procedural landmark steps (Mayfield measurement point and bone measurement point), and deviations were recorded. RESULTS After initial coregistration, the mean (SD) TRE1 was 2.9 (3.3) mm. The TRE1 was significantly dependent on patient positioning, lesion localization, type of neuroimaging, and coregistration method. The following procedures decreased neuronavigation accuracy: attachment of surgical drapes (DTRE2 = 2.7 [1.7] mm), skin retractor attachment (DTRE3 = 1.2 [1.0] mm), craniotomy (DTRE3 = 1.0 [1.4] mm), and Halo ring installation (DTRE3 = 0.5 [0.5] mm). Surgery duration was a significant factor also; the overall DTRE was 1.3 [1.5] mm after 30 minutes and increased to 4.4 [1.8] mm after 5.5 hours of surgery. CONCLUSION After registration, there is an ongoing loss of neuronavigation accuracy. The major factors were draping, attachment of skin retractors, and duration of surgery. Surgeons should be aware of this silent loss of accuracy when using neuronavigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An updated search is performed for gluino, top squark, or bottom squark R-hadrons that have come to rest within the ATLAS calorimeter, and decay at some later time to hadronic jets and a neutralino, using 5.0 and 22.9 fb(-1) of pp collisions at 7 and 8 TeV, respectively. Candidate decay events are triggered in selected empty bunch crossings of the LHC in order to remove pp collision backgrounds. Selections based on jet shape and muon system activity are applied to discriminate signal events from cosmic ray and beam-halo muon backgrounds. In the absence of an excess of events, improved limits are set on gluino, stop, and sbottom masses for different decays, lifetimes, and neutralino masses. With a neutralino of mass 100 GeV, the analysis excludes gluinos with mass below 832 GeV (with an expected lower limit of 731 GeV), for a gluino lifetime between 10 mu s and 1000 s in the generic R-hadron model with equal branching ratios for decays to q (q) over bar(chi) over tilde (0) and g (chi) over tilde (0). Under the same assumptions for the neutralino mass and squark lifetime, top squarks and bottom squarks in the Regge R-hadron model are excluded with masses below 379 and 344 GeV, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T eq up to 2,000 K, to those of a few Earth masses, with T eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE Currently, the diagnosis of pedicle screw (PS) loosening is based on a subjectively assessed halo sign, that is, a radiolucent line around the implant wider than 1 mm in plain radiographs. We aimed at development and validation of a quantitative method to diagnose PS loosening on radiographs. METHODS Between 11/2004 and 1/2010 36 consecutive patients treated with thoraco-lumbar spine fusion with PS instrumentation without PS loosening were compared with 37 other patients who developed a clinically manifesting PS loosening. Three different angles were measured and compared regarding their capability to discriminate the loosened PS over the postoperative course. The inter-observer invariance was tested and a receiver operating characteristics curve analysis was performed. RESULTS The angle measured between the PS axis and the cranial endplate was significantly different between the early and all later postoperative images. The Spearman correlation coefficient for the measurements of two observers at each postoperative time point ranged between 0.89 at 2 weeks to 0.94 at 2 months and 1 year postoperative. The angle change of 1.9° between immediate postoperative and 6-month postoperative was 75% sensitive and 89% specific for the identification of loosened screws (AUC = 0.82). DISCUSSION The angle between the PS axis and the cranial endplate showed good ability to change in PS loosening. A change of this angle of at least 2° had a relatively high sensitivity and specificity to diagnose screw loosening.