56 resultados para Grouted Loose Sandy soils
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Buttressing is a trait special to tropical trees but explanations for its occurrence remain inconclusive. The two main hypotheses are that they provide structural support and/or promote nutrient acquisition. Studies of the first are common but the second has received much less attention. Architectural measurements were made on adult and juvenile trees of the ectomycorrhizal species Microberlinia bisulcata, in Korup (Cameroon). Buttressing on this species is highly distinctive with strong lateral extension of surface roots of the juveniles leading to a mature buttress system of a shallow spreading form on adults. This contrasts with more vertical buttresses, closer to the stem, found on many other tropical tree species. No clear relationship between main buttress and large branch distribution was found. Whilst this does not argue against the essential structural role of buttresses for these very large tropical trees, the form on M. bisulcata does suggest a likely second role, that of aiding nutrient acquisition. At the Korup site, with its deep sandy soils of very low phosphorus status, and where most nutrient cycling takes place in a thin surface layer of fine roots and mycorrhizas, it appears that buttress form could develop from soil-surface root exploration for nutrients by juvenile trees. It may accordingly allow M. bisulcata to attain the higher greater competitive ability, faster growth rate, and maximum tree size that it does compared with other co-occurring tree species. For sites across the tropics in general, the degree of shallowness and spatial extension of buttresses of the dominant species is hypothesized to increase with decreasing nutrient availability.
Resumo:
Based on litter mass and litterfall data, decomposition rates for leaves were found to be fast (k = 3.3) and the turnover times short (3.6 mo) on the low-nutrient sandy soils of Korup. Leaf litter of four ectomycorrhizal tree species (Berlinia bracteosa, Didelotia africana, Microberlinia bisulcata and Tetraberlinia bifoliolata) and of three non-ectomycorrhizal species (Cola verticillata, Oubanguia alata and Strephonema pseudocola) from Korup were left to decompose in 2-mm mesh bags on the forest floor in three plots of each of two forest types forest of low (LEM) and high (HEM) abundance of ectomycorrhizal (caesalp) trees. The litter of the ectomycorrhizal species decayed at a significantly slower rate than that of the non-ectomycorrhizal species, although the former were richer in P and N concentrations of the start. Disappearance rates of the litter layer showed a similar trend. Ectomycorrhizal species immobilized less N, but mineralized more P, than non-ectomycorrhizal species. Differences between species groups in K, Mg and Ca mineralization were negligible. Effect of forest type was clear only for Mg: mineralization of Mg was faster in the HEM than LEM plots, a pattern repeated across all species. This difference was attributed to a much more prolific fine root mat in the HEM than LEM forest. The relatively fast release of P from the litter of the ectomycorrhizal species suggests that the mat must allow an efficient uptake to maintain P in the forest ecosystem.
Resumo:
A novel proxy for continental mean annual air temperature (MAAT) and soil pH, the MBT/CBT-paleothermometer, is based on the temperature (T) and pH-dependent distribution of specific bacterial membrane lipids (branched glycerol dialkyl glycerol tetraethers – GDGTs) in soil organic matter. Here, we tested the applicability of the MBT/CBT-paleothermometer to sediments from Lake Cadagno, a high Alpine lake in southern Switzerland with a small catchment of 2.4 km2. We analysed the distribution of bacterial GDGTs in catchment soils and in a radiocarbon-dated sediment core from the centre of the lake, covering the past 11 000 yr. The distribution of bacterial GDGTs in the catchment soils is very similar to that in the lake's surface sediments, indicating a common origin of the lipids. Consequently, their transfer from the soils into the sediment record seems undisturbed, probably without any significant alteration of their distribution through in situ production in the lake itself or early diagenesis of branched GDGTs. The MBT/CBT-inferred MAAT estimates from soils and surface sediments are in good agreement with instrumental values for the Lake Cadagno region (~0.5 °C). Moreover, downcore MBT/CBT-derived MAAT estimates match in timing and magnitude other proxy-based T reconstructions from nearby locations for the last two millennia. Major climate anomalies recorded by the MBT/CBT-paleothermometer are, for instance, the Little Ice Age (~14th to 19th century) and the Medieval Warm Period (MWP, ~9th to 14th century). Together, our observations indicate the quantitative applicability of the MBT/CBT-paleothermometer to Lake Cadagno sediments. In addition to the MWP, our lacustrine paleo T record indicates Holocene warm phases at about 3, 5, 7 and 11 kyr before present, which agrees in timing with other records from both the Alps and the sub-polar North-East Atlantic Ocean. The good temporal match of the warm periods determined for the central Alpine region with north-west European winter precipitation strength implies a strong and far-reaching influence of the North Atlantic Oscillation on continental European T variations during the Holocene.