12 resultados para Griffin, S. A.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: The hypereosinophilic syndrome is a group of diseases characterized by persistent blood eosinophilia, defined as more than 1500 cells per microliter with end-organ involvement and no recognized secondary cause. Although most patients have a response to corticosteroids, side effects are common and can lead to considerable morbidity. METHODS: We conducted an international, randomized, double-blind, placebo-controlled trial evaluating the safety and efficacy of an anti-interleukin-5 monoclonal antibody, mepolizumab, in patients with the hypereosinophilic syndrome. Patients were negative for the FIP1L1-PDGFRA fusion gene and required prednisone monotherapy, 20 to 60 mg per day, to maintain a stable clinical status and a blood eosinophil count of less than 1000 per microliter. Patients received either intravenous mepolizumab or placebo while the prednisone dose was tapered. The primary end point was the reduction of the prednisone dose to 10 mg or less per day for 8 or more consecutive weeks. RESULTS: The primary end point was reached in 84% of patients in the mepolizumab group, as compared with 43% of patients in the placebo group (hazard ratio, 2.90; 95% confidence interval [CI], 1.59 to 5.26; P<0.001) with no increase in clinical activity of the hypereosinophilic syndrome. A blood eosinophil count of less than 600 per microliter for 8 or more consecutive weeks was achieved in 95% of patients receiving mepolizumab, as compared with 45% of patients receiving placebo (hazard ratio, 3.53; 95% CI, 1.94 to 6.45; P<0.001). Serious adverse events occurred in seven patients receiving mepolizumab (14 events, including one death; mean [+/-SD] duration of exposure, 6.7+/-1.9 months) and in five patients receiving placebo (7 events; mean duration of exposure, 4.3+/-2.6 months). CONCLUSIONS: Our study shows that treatment with mepolizumab, an agent designed to target eosinophils, can result in corticosteroid-sparing for patients negative for FIP1L1-PDGFRA who have the hypereosinophilic syndrome. (ClinicalTrials.gov number, NCT00086658 [ClinicalTrials.gov].).
Resumo:
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T eq up to 2,000 K, to those of a few Earth masses, with T eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.
Resumo:
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.
Resumo:
It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
Resumo:
OBJECTIVE To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. STUDY DESIGN In vitro imaging and anatomic study. ANIMALS Medium-sized canine cadaver vertebral columns (n=12). METHODS Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. RESULTS Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CONCLUSIONS CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CLINICAL RELEVANCE CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.
Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought
Resumo:
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.