3 resultados para Gremlin
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Bone morphogenetic proteins (BMP) have been used successfully by orthopedic clinicians to augment bone healing. However, these osteoinductive proteins must be applied at high concentrations to induce bone formation. The limited therapeutic efficacy may be due to the local expression of BMP antagonists such as Noggin that neutralize exogenous and endogenous BMPs. If so, inhibiting BMP antagonists may provide an attractive option to augment BMP induced bone formation. The engineered BMP-2 variant L51P is deficient in BMP receptor type I binding, but maintains its affinity for BMP receptor type II and BMP antagonists including Noggin, Chordin and Gremlin. This modification makes L51P a BMP receptor-inactive inhibitor of BMP antagonists. We implanted β-tricalcium phosphate ceramics loaded with BMP-2 and/or L51P into a critical size defect model in the rat femur to investigate whether the inhibition of BMP antagonist with L51P enhances the therapeutic efficacy of exogenous BMP-2. Our study reveals that L51P reduces the demand of exogenous BMP-2 to induce bone healing markedly, without promoting bone formation directly when applied alone.
Resumo:
Background: The differentiation of ADSC is regulated by many factors, including oxygen tensions. Evidences have suggested that low oxygen tension or hypoxia is involved in the osteogenic, adipogenic differentiations of MSCs. Expansion and induction of ADSCs under hypoxia generally result in enhanced osteogenic, differentiation. Therefore, we analyzed bovine ADSC differentiations in Normoxia and hypoxia conditions Methodology: Recently (<8h) cow tail from a slaughterhouse, take out some fat from the tail and fat cells was isolated by using for isolation of ADSC protocol, the expansion cells were put into osteogenic and adipogenic medium for 3 weeks in hypoxia and normoxia conditions separately and characterized by Von kossa, Alizarin red and Oil red O staining and further by using real-time PCR by using primers of osteocalcin, Collagen type1, cbfa1/runx2, ALP, ostepontin, osteonectin, BMP2, BMP24, BMP27, noggin, gremlin, Nestin and HIF1A,VEGFA,PPARG,Leptin. Results: Our experiment results show hypoxia promotes osteogenesis but suppresses adipogenesis.
Resumo:
BACKGROUND Clinical observations indicate that the presence of nucleus pulposus (NP) tissue during spinal fusion hinders the rate of disc ossification. While the underlying mechanism remains unknown, this observation could be due to incomplete removal of NP cells (NPCs) that secrete factors preventing disc calcification, such as bone morphogenetic protein (BMP) antagonists including noggin and members of the DAN (differential screening selected gene aberrative in neuroblastoma) family. METHODS Monolayer human bone marrow-derived mesenchymal stem cells (MSCs) were cocultured withNPCs and annulus fibrosus cells (AFCs) embedded in alginate for 21 days. At the end of coculture, MSCs were stained for mineral deposition by alizarin red, and relative expression of bone-related genes [Runt-related transcription factor 2, (RUNX2), Osteopontin (OPN), and Alkaline phosphatase (ALP)] and ALP activity were analyzed. Relative expression of three BMP antagonists, chordin (CHRD), gremlin (GREM1), and noggin (NOG), was determined in primary human NPCs and AFCs. These cells were also stained for Gremlin and Noggin by immunocytochemistry. RESULTS Alizarin red staining showed that MSC osteogenesis in monolayer cultures was inhibited by coculture with NPCs or AFCs. ALP activity and RT-PCR analyses confirmed these results and demonstrated inhibition of osteogenesis of MSC in the presence of disc cells. NOG was significantly up-regulated in MSCs after coculture. Relative gene expression of intervertebral disc (IVD) cells showed higher expression of GREM1 in NPCs than in AFCs. CONCLUSIONS We show that primary IVD cells inhibit osteogenesis of MSCs. BMP inhibitors NOG, GREM1 and CHRD were expressed in IVD cells. GREM1 appears to be differentially expressed in NPCs and AFCs. Our results have implications for the design and development of treatments for non-union in spinal fusion.