6 resultados para Graph models
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The central assumption in the literature on collaborative networks and policy networks is that political outcomes are affected by a variety of state and nonstate actors. Some of these actors are more powerful than others and can therefore have a considerable effect on decision making. In this article, we seek to provide a structural and institutional explanation for these power differentials in policy networks and support the explanation with empirical evidence. We use a dyadic measure of influence reputation as a proxy for power, and posit that influence reputation over the political outcome is related to vertical integration into the political system by means of formal decision-making authority, and to horizontal integration by means of being well embedded into the policy network. Hence, we argue that actors are perceived as influential because of two complementary factors: (a) their institutional roles and (b) their structural positions in the policy network. Based on temporal and cross-sectional exponential random graph models, we compare five cases about climate, telecommunications, flood prevention, and toxic chemicals politics in Switzerland and Germany. The five networks cover national and local networks at different stages of the policy cycle. The results confirm that institutional and structural drivers seem to have a crucial impact on how an actor is perceived in decision making and implementation and, therefore, their ability to significantly shape outputs and service delivery.
Resumo:
Energy shocks like the Fukushima accident can have important political consequences. This article examines their impact on collaboration patterns between collective actors in policy processes. It argues that external shocks create both behavioral uncertainty, meaning that actors do not know about other actors' preferences, and policy uncertainty on the choice and consequences of policy instruments. The context of uncertainty interacts with classical drivers of actor collaboration in policy processes. The analysis is based on a dataset comprising interview and survey data on political actors in two subsequent policy processes in Switzerland and Exponential Random Graph Models for network data. Results first show that under uncertainty, collaboration of actors in policy processes is less based on similar preferences than in stable contexts, but trust and knowledge of other actors are more important. Second, under uncertainty, scientific actors are not preferred collaboration partners.
Resumo:
Mathematical models of disease progression predict disease outcomes and are useful epidemiological tools for planners and evaluators of health interventions. The R package gems is a tool that simulates disease progression in patients and predicts the effect of different interventions on patient outcome. Disease progression is represented by a series of events (e.g., diagnosis, treatment and death), displayed in a directed acyclic graph. The vertices correspond to disease states and the directed edges represent events. The package gems allows simulations based on a generalized multistate model that can be described by a directed acyclic graph with continuous transition-specific hazard functions. The user can specify an arbitrary hazard function and its parameters. The model includes parameter uncertainty, does not need to be a Markov model, and may take the history of previous events into account. Applications are not limited to the medical field and extend to other areas where multistate simulation is of interest. We provide a technical explanation of the multistate models used by gems, explain the functions of gems and their arguments, and show a sample application.
Resumo:
Libraries of learning objects may serve as basis for deriving course offerings that are customized to the needs of different learning communities or even individuals. Several ways of organizing this course composition process are discussed. Course composition needs a clear understanding of the dependencies between the learning objects. Therefore we discuss the metadata for object relationships proposed in different standardization projects and especially those suggested in the Dublin Core Metadata Initiative. Based on these metadata we construct adjacency matrices and graphs. We show how Gozinto-type computations can be used to determine direct and indirect prerequisites for certain learning objects. The metadata may also be used to define integer programming models which can be applied to support the instructor in formulating his specifications for selecting objects or which allow a computer agent to automatically select learning objects. Such decision models could also be helpful for a learner navigating through a library of learning objects. We also sketch a graph-based procedure for manual or automatic sequencing of the learning objects.