2 resultados para Grandfather
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A heterozygous missense mutation in the GH-1 gene converting codon 77 from arginine (R) to cysteine (C), which was previously reported to have some GH antagonistic effect, was identified in a Syrian family. The index patient, a boy, was referred for assessment of his short stature (-2.5 SDS) at the age of 6 years. His mother and grandfather were also carrying the same mutation, but did not differ in adult height from the other unaffected family members. Hormonal examination in all affected subjects revealed increased basal GH, low IGF-I concentrations, and subnormal IGF-I response in generation test leading to the diagnosis of partial GH insensitivity. However, GH receptor gene (GHR) sequencing demonstrated no abnormalities. As other family members carrying the GH-R77C form showed similar alterations at the hormonal level, but presented with normal final height, no GH therapy was given to the boy, but he was followed through his pubertal development which was delayed. At the age of 20 years he reached his final height, which was normal within his parental target height. Functional characterization of the GH-R77C, assessed through activation of Jak2/Stat5 pathway, revealed no differences in the bioactivity between wild-type-GH (wt-GH) and GH-R77C. Detailed structural analysis indicated that the structure of GH-R77C, in terms of disulfide bond formation, is almost identical to that of the wt-GH despite the introduced mutation (Cys77). Previous studies from our group demonstrated a reduced capability of GH-R77C to induce GHR/GH-binding protein (GHBP) gene transcription rate when compared with wt-GH. Therefore, reduced GHR/GHBP expression might well be the possible cause for the partial GH insensitivity found in our patients. In addition, this group of patients deserve further attention because they could represent a distinct clinical entity underlining that an altered GH peptide may also have a direct impact on GHR/GHBP gene expression causing partial GH insensitivity. This might be responsible for the delay of growth and pubertal development. Finally, we clearly demonstrate that GH-R77C is not invariably associated with short stature, but that great care needs to be taken in ascribing growth failure to various heterozygous mutations affecting the GH-IGF axis and that careful functional studies are mandatory.
Resumo:
CONTEXT AND OBJECTIVE: A single missense mutation in the GH-1 gene converting codon 77 from arginine (R) to cysteine (C) yields a mutant GH-R77C peptide, which was described as natural GH antagonist. DESIGN, SETTING, AND PATIENTS: Heterozygosity for GH-R77C/wt-GH was identified in a Syrian family. The index patient, a boy, was referred for assessment of his short stature (-2.5 SD score) and partial GH insensitivity was diagnosed. His mother and grandfather were also carrying the same mutation and showed partial GH insensitivity with modest short stature. INTERVENTIONS AND RESULTS: Functional characterization of the GH-R77C was performed through studies of GH receptor binding and activation of Janus kinase 2/Stat5 pathway. No differences in the binding affinity and bioactivity between wt-GH and GH-R77C were found. Similarly, cell viability and proliferation after expression of both GH peptides in AtT-20 cells were identical. Quantitative confocal microscopy analysis revealed no significant difference in the extent of subcellular colocalization between wt-GH and GH-R77C with endoplasmic reticulum, Golgi, or secretory vesicles. Furthermore studies demonstrated a reduced capability of GH-R77C to induce GHR/GHBP gene transcription rate when compared with wt-GH. CONCLUSION: Reduced GH receptor/GH-binding protein expression might be a possible cause for the partial GH insensitivity with delay in growth and pubertal development found in our patients. In addition, this group of patients deserves further attention because they could represent a distinct clinical entity underlining that an altered GH peptide may also have a direct impact on GHR/GHBP gene expression causing partial GH insensitivity.