73 resultados para Gradient Flows
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A great number of debris flows occurred during the flood catastrophes of the summer of 1987 in the Swiss Alps. Aerial photography, field investigations and eyewitness accounts documented and analysed the events. As an example of the reconstructed major events, the large debris flow in the Varuna valley involved an estimated peak discharge between 400 and 800 m3/s and an event magnitude of 200,000 m3. Several single pulses were observed; the duration of each of them appeared to be not more than a few minutes. Apart from incision into weak bedrock, the maximum erosion depth seemed to depend on the channel gradient. Based on approximately 600 events, typical starting zones and rainfall conditions are discussed with regard to the triggering conditions. Existing and new empirical formulae are proposed to estimate the most important flow parameters. These values are compared to debris flow data from Canada and Japan.
Resumo:
To prospectively evaluate a 3-dimensional spoiled gradient-dual-echo (3D SPGR-DE) magnetic resonance imaging (MRI) sequence for the qualitative and quantitative analysis of liver fat content (LFC) in patients with the suspicion of fatty liver disease using histopathology as the standard of reference.
Resumo:
Due to the existence of a velocity slip and temperature jump on the solid walls, the heat transfer in microchannels significantly differs from the one in the macroscale. In our research, we have focused on the pressure driven gas flows in a simple finite microchannel geometry, with an entrance and an outlet, for low Reynolds (Re<200) and low Knudsen (Kn<0.01) numbers. For such a regime, the slip induced phenomena are strongly connected with the viscous effects. As a result, heat transfer is also significantly altered. For the optimization of flow conditions, we have investigated various temperature gradient configurations, additionally changing Reynolds and Knudsen numbers. The entrance effects, slip flow, and temperature jump lead to complex relations between flow behavior and heat transfer. We have shown that slip effects are generally insignificant for flow behavior. However, two configuration setups (hot wall cold gas and cold wall hot gas) are affected by slip in distinguishably different ways. For the first one, which concerns turbomachinery, the mass flow rate can increase by about 1% in relation to the no-slip case, depending on the wall-gas temperature difference. Heat transfer is more significantly altered. The Nusselt number between slip and no-slip cases at the outlet of the microchannel is increased by about 10%.