53 resultados para Gordon Rule
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The prognosis of patients in whom pulmonary embolism (PE) is suspected but ruled out is poorly understood. We evaluated whether the initial assessment of clinical probability of PE could help to predict the prognosis for these patients.
Resumo:
The Pulmonary Embolism Rule-out Criteria (PERC) rule is a clinical diagnostic rule designed to exclude pulmonary embolism (PE) without further testing. We sought to externally validate the diagnostic performance of the PERC rule alone and combined with clinical probability assessment based on the revised Geneva score.
Resumo:
Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing–dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.