20 resultados para Golgi
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5' end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3' end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.
Resumo:
myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.
Resumo:
This study addresses the cellular uptake and intracellular trafficking of 15-nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air-liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG-coated than citrate-stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150-1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin- and clathrin-mediated endocytosis by methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG-coated than citrate-stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MbetaCD. With prolonged exposure times, both NPs are preferentially localized in larger-sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG-coated NPs in the cytosol.
Resumo:
Neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) proteins are ubiquitin ligases, which attach ubiquitin moieties to their target proteins, a post-translational modification that is most commonly associated with protein degradation. Nedd4 ubiquitin ligases have been shown to down-regulate both potassium and sodium channels. In this study, we investigated whether Nedd4 ubiquitin ligases also regulate Ca(v) calcium channels. We expressed three Nedd4 family members, Nedd4-1, Nedd4-2, and WWP2, together with Ca(v)1.2 channels in tsA-201 cells. We found that Nedd4-1 dramatically decreased Ca(v) whole-cell currents, whereas Nedd4-2 and WWP2 failed to regulate the current. Surface biotinylation assays revealed that Nedd4-1 decreased the number of channels inserted at the plasma membrane. Western blots also showed a concomitant decrease in the total expression of the channels. Surprisingly, however, neither the Ca(v) pore-forming α1 subunit nor the associated Ca(v)β and Ca(v)α(2)δ subunits were ubiquitylated by Nedd4-1. The proteasome inhibitor MG132 prevented the degradation of Ca(v) channels, whereas monodansylcadaverine and chloroquine partially antagonized the Nedd4-1-induced regulation of Ca(v) currents. Remarkably, the effect of Nedd4-1 was fully prevented by brefeldin A. These data suggest that Nedd4-1 promotes the sorting of newly synthesized Ca(v) channels for degradation by both the proteasome and the lysosome. Most importantly, Nedd4-1-induced regulation required the co-expression of Ca(v)β subunits, known to antagonize the retention of the channels in the endoplasmic reticulum. Altogether, our results suggest that Nedd4-1 interferes with the chaperon role of Ca(v)β at the endoplasmic reticulum/Golgi level to prevent the delivery of Ca(v) channels at the plasma membrane.
Resumo:
myo-Inositol is an essential precursor for the production of inositol phosphates and inositol phospholipids in all eukaryotes. Intracellular myo-inositol is generated by de novo synthesis from glucose 6-phosphate or is provided from the environment via myo-inositol symporters. We show that in Trypanosoma brucei, the causative pathogen of human African sleeping sickness and nagana in domestic animals, myo-inositol is taken up via a specific proton-coupled electrogenic symport and that this transport is essential for parasite survival in culture. Down-regulation of the myo-inositol transporter using RNA interference inhibited uptake of myo-inositol and blocked the synthesis of the myo-inositol-containing phospholipids, phosphatidylinositol and inositol phosphorylceramide; in contrast, it had no effect on glycosylphosphatidylinositol production. This together with the unexpected localization of the myo-inositol transporter in both the plasma membrane and the Golgi demonstrate that metabolism of endogenous and exogenous myo-inositol in T. brucei is strictly segregated.
Resumo:
Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.
Resumo:
Endocrine and neuroendocrine cells differ from cells which rapidly release all their secreted proteins in that they store some secretory proteins in concentrated forms in secretory granules to be rapidly released when cells are stimulated. Protein aggregation is considered as the first step in the secretory granule biosynthesis and, at least in the case of prolactin and growth hormone, greatly depends on zinc ions that facilitate this process. Hence, regulation of cellular zinc transport especially that within the regulated secretory pathway is of importance to understand. Various zinc transporters of Slc30a/ZnT and Slc39a/Zip families have been reported to fulfil this role and to participate in fine tuning of zinc transport in and out of the endoplasmic reticulum, Golgi complex and secretory granules, the main cellular compartments of the regulated secretory pathway. In this review, we will focus on the role of zinc in the formation of hormone-containing secretory granules with special emphasis on conditions required for growth hormone dimerization/aggregation. In addition, we highlight the role of zinc transporters that govern the process of zinc homeostasis in the regulated hormone secretion.
Resumo:
BACKGROUND: Familial isolated growth hormone deficiency (IGHD) is a disorder with about 5-30% of patients having affected relatives. Among those familial types, IGHD type II is an autosomal dominant form of short stature, associated in some families with mutations that result in missplicing to produce del32-71-GH, a GH peptide which cannot fold properly. The mechanism by which this mutant GH may alter the controlled secretory pathway and therefore suppress the secretion of the normal 22-kDa GH product of the normal allele is not known in detail. Previous studies have shown variance depending on cell type, transfection technique used, as well as on the method of analysis performed. AIM: The aim of our study was to analyse and compare the subcellular distribution/localization of del32-71-GH or wild-type (wt)-GH (22-kDa GH), each stably transfected into AtT-20, a mouse pituitary cell line endogenously producing ACTH, employed as the internal control for secretion assessment. METHODS: Colocalization of wt- and del32-71 mutant GH form was studied by quantitative confocal microscopy analysis. Using the immunofluorescent technique, cells were double stained for GH plus one of the following organelles: endoplasmic reticulum (ER anti-Grp94), Golgi (anti-betaCOP) or secretory granules (anti-Rab3a). In addition, GH secretion and cell viability were analysed in detail. RESULTS/CONCLUSIONS: Our results show that in AtT-20 neuroendocrine cells, in comparison to the wt-GH, the del32-71-GH has a major impact on the secretory pathway not only affecting GH but also other peptides such as ACTH. The del32-71-GH is still present at the secretory vesicles' level, albeit in reduced quantity when compared to wt-GH but, importantly, was secretion-deficient. Furthermore, while focusing on cell viability an additional finding presented that the various splice site mutations, even though leading eventually to the same end product, namely del32-71-GH, have different and specific consequences on cell viability and proliferation rate.
Resumo:
CONTEXT AND OBJECTIVE: A single missense mutation in the GH-1 gene converting codon 77 from arginine (R) to cysteine (C) yields a mutant GH-R77C peptide, which was described as natural GH antagonist. DESIGN, SETTING, AND PATIENTS: Heterozygosity for GH-R77C/wt-GH was identified in a Syrian family. The index patient, a boy, was referred for assessment of his short stature (-2.5 SD score) and partial GH insensitivity was diagnosed. His mother and grandfather were also carrying the same mutation and showed partial GH insensitivity with modest short stature. INTERVENTIONS AND RESULTS: Functional characterization of the GH-R77C was performed through studies of GH receptor binding and activation of Janus kinase 2/Stat5 pathway. No differences in the binding affinity and bioactivity between wt-GH and GH-R77C were found. Similarly, cell viability and proliferation after expression of both GH peptides in AtT-20 cells were identical. Quantitative confocal microscopy analysis revealed no significant difference in the extent of subcellular colocalization between wt-GH and GH-R77C with endoplasmic reticulum, Golgi, or secretory vesicles. Furthermore studies demonstrated a reduced capability of GH-R77C to induce GHR/GHBP gene transcription rate when compared with wt-GH. CONCLUSION: Reduced GH receptor/GH-binding protein expression might be a possible cause for the partial GH insensitivity with delay in growth and pubertal development found in our patients. In addition, this group of patients deserves further attention because they could represent a distinct clinical entity underlining that an altered GH peptide may also have a direct impact on GHR/GHBP gene expression causing partial GH insensitivity.
Resumo:
Fibroblast growth factor receptor-like 1 (FGFRL1) is a recently discovered transmembrane protein whose functions remain unclear. Since mutations in the related receptors FGFR1-3 cause skeletal malformations, DNA samples from 55 patients suffering from congenital skeletal malformations and 109 controls were searched for mutations in FGFRL1. One patient was identified harboring a frameshift mutation in the intracellular domain of this novel receptor. The patient showed craniosynostosis, radio-ulnar synostosis and genital abnormalities and had previously been diagnosed with Antley-Bixler syndrome. The effect of the FGFRL1 mutation was studied in vitro. In a reporter gene assay, the wild-type as well as the mutant receptor inhibited FGF signaling. However, the mutant protein differed from the wild-type protein in its subcellular localization. Mutant FGFRL1 was mainly found at the plasma membrane where it interacted with FGF ligands, while the wild-type protein was preferentially located in vesicular structures and the Golgi complex. Two motifs from the intracellular domain of FGFRL1 appeared to be responsible for this differential distribution, a tandem tyrosine based motif and a histidine-rich sequence. Deletion of either one led to the preferential redistribution of FGFRL1 to the plasma membrane. It is therefore likely that mutant FGFRL1 contributes to the skeletal malformations of the patient.
Resumo:
Three closely related human sec14p-like proteins (hTAP1, 2, and 3, or SEC14L2, 3, and 4, respectively) have been described. These proteins may participate in intracellular lipid transport (phospholipids, squalene, tocopherol analogues and derivatives) or influence regulatory lipid-dependent events. Here, we show that the three recombinant hTAP proteins associate with the Golgi apparatus and mitochondria, and enhance the in vitro transport of radioactively labeled alpha-tocopherol to mitochondria in the same order of magnitude as the human alpha-tocopherol transfer protein (alpha-TTP). hTAP1 and hTAP2 are expressed in several cell lines, whereas the expression level of hTAP3 is low. Expression of hTAP1 is induced in human umbilical cord blood-derived mast cells upon differentiation by interleukin 4. In tissues, the three hTAPs are detectable ubiquitously at low level; pronounced and localized expression is found for hTAP2 and hTAP3 in the perinuclear region in cerebellum, lung, liver and adrenal gland. hTAP3 is well expressed in the epithelial duct cells of several glands, in ovary in endothelial cells of small arteries as well as in granulosa and thecal cells, and in testis in Leydig cells. Thus, the three hTAPs may mediate lipid uptake, secretion, presentation, and sub-cellular localization in a tissue-specific manner, possibly using organelle- and enzyme-specific docking sites.
Resumo:
OBJECTIVE: The effects of mechanical deformation of intact cartilage tissue on chondrocyte biosynthesis in situ have been well documented, but the mechanotransduction pathways that regulate such phenomena have not been elucidated completely. The goal of this study was to examine the effects of tissue deformation on the morphology of a range of intracellular organelles which play a major role in cell biosynthesis and metabolism. DESIGN: Using chemical fixation, high pressure freezing, and electron microscopy, we imaged chondrocytes within mechanically compressed cartilage explants at high magnification and quantitatively and qualitatively assessed changes in organelle volume and shape caused by graded levels of loading. RESULTS: Compression of the tissue caused a concomitant reduction in the volume of the extracellular matrix (ECM), chondrocyte, nucleus, rough endoplasmic reticulum, and mitochondria. Interestingly, however, the Golgi apparatus was able to resist loss of intraorganelle water and retain a portion of its volume relative to the remainder of the cell. These combined results suggest that a balance between intracellular mechanical and osmotic gradients govern the changes in shape and volume of the organelles as the tissue is compressed. CONCLUSIONS: Our results lead to the interpretive hypothesis that organelle volume changes appear to be driven mainly by osmotic interactions while shape changes are mediated by structural factors, such as cytoskeletal interactions that may be linked to extracellular matrix deformations. The observed volume and shape changes of the chondrocyte organelles and the differential behavior between organelles during tissue compression provide evidence for an important mechanotransduction pathway linking translational and post-translational events (e.g., elongation and sulfation of glycosaminoglycans (GAGs) in the Golgi) to cell deformation.
Resumo:
BACKGROUND & AIMS: Congenital sucrase-isomaltase (SI) deficiency is an autosomal-recessive intestinal disorder characterized by a drastic reduction or absence of sucrase and isomaltase activities. Previous studies have indicated that single mutations underlie individual phenotypes of the disease. We investigated whether compound heterozygous mutations, observed in some patients, have a role in disease pathogenesis. METHODS: We introduced mutations into the SI complementary DNA that resulted in the amino acid substitutions V577G and G1073D (heterozygous mutations found in one group of patients) or C1229Y and F1745C (heterozygous mutations found in another group). The mutant genes were expressed transiently, alone or in combination, in COS cells and the effects were assessed at the protein, structural, and subcellular levels. RESULTS: The mutants SI-V577G, SI-G1073D, and SI-F1745C were misfolded and could not exit the endoplasmic reticulum, whereas SI-C1229Y was transported only to the Golgi apparatus. Co-expression of mutants found on each SI allele in patients did not alter the protein's biosynthetic features or improve its enzymatic activity. Importantly, the mutations C1229Y and F1745C, which lie in the sucrase domains of SI, prevented its targeting to the cell's apical membrane but did not affect protein folding or isomaltase activity. CONCLUSIONS: Compound heterozygosity is a novel pathogenic mechanism of congenital SI deficiency. The effects of mutations in the sucrase domain of SIC1229Y and SIF1745C indicate the importance of a direct interaction between isomaltase and sucrose and the role of sucrose as an intermolecular chaperone in the intracellular transport of SI.
Resumo:
The pro-apoptotic BCL-2 family member BOK is widely expressed and resembles the multi-BH domain proteins BAX and BAK based on its amino acid sequence. The genomic region encoding BOK was reported to be frequently deleted in human cancer and it has therefore been hypothesized that BOK functions as a tumor suppressor. However, little is known about the molecular functions of BOK. We show that enforced expression of BOK activates the intrinsic (mitochondrial) apoptotic pathway in BAX/BAK-proficient cells but fails to kill cells lacking both BAX and BAK or sensitize them to cytotoxic insults. Interestingly, major portions of endogenous BOK are localized to and partially inserted into the membranes of the Golgi apparatus as well as the endoplasmic reticulum (ER) and associated membranes. The C-terminal transmembrane domain of BOK thereby constitutes a 'tail-anchor' specific for targeting to the Golgi and ER. Overexpression of full-length BOK causes early fragmentation of ER and Golgi compartments. A role for BOK on the Golgi apparatus and the ER is supported by an abnormal response of Bok-deficient cells to the Golgi/ER stressor brefeldin A. Based on these results, we propose that major functions of BOK are exerted at the Golgi and ER membranes and that BOK induces apoptosis in a manner dependent on BAX and BAK.
Resumo:
Human growth hormone (GH) causes a variety of physiological and metabolic effects in humans and plays a pivotal role in postnatal growth. In somatotroph cells of the anterior pituitary, GH is stored in concentrated forms in secretory granules to be rapidly released upon GH-releasing hormone stimulation. During the process of secretory granule biogenesis, self-association of GH occurs in the compartments of the early secretory pathway (endoplasmic reticulum and Golgi complex). Since this process is greatly facilitated by the presence of zinc ions, it is of importance to understand the potential role of zinc transporters that participate in the fine-tuning of zinc homeostasis and dynamics, particularly in the early secretory pathway. Thus, the role of zinc transporters in supplying the secretory pathway with the sufficient amount of zinc required for the biogenesis of GH-containing secretory granules is essential for normal secretion. This report, illustrated by a clinical case report on transient neonatal zinc deficiency, focuses on the role of zinc in GH storage in the secretory granules and highlights the role of specific zinc transporters in the early secretory pathway.