76 resultados para Goal-directed fluid therapy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
INTRODUCTION: Perioperative hypovolemia arises frequently and contributes to intestinal hypoperfusion and subsequent postoperative complications. Goal-directed fluid therapy might reduce these complications. The aim of this study was to compare the effects of goal-directed administration of crystalloids and colloids on the distribution of systemic, hepatosplanchnic, and microcirculatory (small intestine) blood flow after major abdominal surgery in a clinically relevant pig model. METHODS: Twenty-seven pigs were anesthetized and mechanically ventilated and underwent open laparotomy. They were randomly assigned to one of three treatment groups: the restricted Ringer lactate (R-RL) group (n = 9) received 3 mL/kg per hour of RL, the goal-directed RL (GD-RL) group (n = 9) received 3 mL/kg per hour of RL and intermittent boluses of 250 mL of RL, and the goal-directed colloid (GD-C) group (n = 9) received 3 mL/kg per hour of RL and boluses of 250 mL of 6% hydroxyethyl starch (130/0.4). The latter two groups received a bolus infusion when mixed venous oxygen saturation was below 60% ('lockout' time of 30 minutes). Regional blood flow was measured in the superior mesenteric artery and the celiac trunk. In the small bowel, microcirculatory blood flow was measured using laser Doppler flowmetry. Intestinal tissue oxygen tension was measured with intramural Clark-type electrodes. RESULTS: After 4 hours of treatment, arterial blood pressure, cardiac output, mesenteric artery flow, and mixed oxygen saturation were significantly higher in the GD-C and GD-RL groups than in the R-RL group. Microcirculatory flow in the intestinal mucosa increased by 50% in the GD-C group but remained unchanged in the other two groups. Likewise, tissue oxygen tension in the intestine increased by 30% in the GD-C group but remained unchanged in the GD-RL group and decreased by 18% in the R-RL group. Mesenteric venous glucose concentrations were higher and lactate levels were lower in the GD-C group compared with the two crystalloid groups. CONCLUSIONS: Goal-directed colloid administration markedly increased microcirculatory blood flow in the small intestine and intestinal tissue oxygen tension after abdominal surgery. In contrast, goal-directed crystalloid and restricted crystalloid administrations had no such effects. Additionally, mesenteric venous glucose and lactate concentrations suggest that intestinal cellular substrate levels were higher in the colloid-treated than in the crystalloid-treated animals. These results support the notion that perioperative goal-directed therapy with colloids might be beneficial during major abdominal surgery.
Resumo:
BACKGROUND Mortality of patients with acute liver failure (ALF) is still unacceptably high. Available liver support systems are still of limited success at improving survival. A new type of albumin dialysis, the Hepa Wash® system, was newly introduced. We evaluated the new liver support system as well as the Molecular Adsorbent Recycling System (MARS) in an ischemic porcine model of ALF. METHODS In the first study animals were randomly allocated to control (n=5) and Hepa Wash (n=6) groups. In a further pilot study, two animals were treated with the MARS-system. All animals received the same medical and surgical procedures. An intraparenchymal intracranial pressure was inserted. Hemodynamic monitoring and goal-directed fluid therapy using the PiCCO system was done. Animals underwent functional end-to-side portacaval shunt and ligation of hepatic arteries. Treatment with albumin dialysis was started after fall of cerebral perfusion pressure to 45 mmHg and continued for 8 h. RESULTS All animals in the Hepa Wash group survived the 13-hour observation period, except for one that died after stopping treatment. Four of the control animals died within this period (p=0.03). Hepa Wash significantly reduced impairment of cerebral perfusion pressure (23±2 vs. 10±3 mmHg, p=0.006) and mean arterial pressure (37±1 vs. 24±2 mmHg, p=0.006) but had no effect on intracranial pressure (14±1 vs. 15±1 mmHg, p=0.72). Hepa Wash also enhanced cardiac index (4.94±0.32 vs. 3.36±0.25 l/min/m2, p=0.006) and renal function (urine production, 1850 ± 570 vs. 420 ± 180 ml, p=0.045) and eliminated water soluble (creatinine, 1.3±0.2 vs. 3.2±0.3 mg/dl, p=0.01; ammonia 562±124 vs. 1382±92 μg/dl, p=0.006) and protein-bound toxins (nitrate/nitrite 5.54±1.57 vs. 49.82±13.27 μmol/l, p=0.01). No adverse events that could be attributed to the Hepa Wash treatment were observed. CONCLUSIONS Hepa Wash was a safe procedure and improved multiorgan system failure in pigs with ALF. The survival benefit could be the result of ameliorating different organ functions in association with the detoxification capacity of water soluble and protein-bound toxins.
Resumo:
BACKGROUND: The aim of this study was to compare the effects of goal-directed colloid fluid therapy with goal-directed crystalloid and restricted crystalloid fluid therapy on healthy and perianastomotic colon tissue in a pig model of colon anastomosis surgery. METHODS: Pigs (n = 27, 9 per group) were anesthetized and mechanically ventilated. A hand-sewn colon anastomosis was performed. The animals were subsequently randomized to one of the following treatments: R-RL group, 3 ml x kg(-1) x h(-1) Ringer lactate (RL); GD-RL group, 3 ml x kg(-1) x h(-1) RL + bolus 250 ml of RL; GD-C group, 3 ml x kg(-1) x h(-1) RL + bolus 250 ml of hydroxyethyl starch (HES 6%, 130/0.4). A fluid bolus was administered when mixed venous oxygen saturation dropped below 60%. Intestinal tissue oxygen tension and microcirculatory blood flow were measured continuously. RESULTS: After 4 h of treatment, tissue oxygen tension in healthy colon increased to 150 +/- 31% in group GD-C versus 123 +/- 40% in group GD-RL versus 94 +/- 23% in group R-RL (percent of postoperative baseline values, mean +/- SD; P < 0.01). Similarly perianastomotic tissue oxygen tension increased to 245 +/- 93% in the GD-C group versus 147 +/- 58% in the GD-RL group and 116 +/- 22% in the R-RL group (P < 0.01). Microcirculatory flow was higher in group GD-C in healthy colon. CONCLUSIONS: Goal-directed colloid fluid therapy significantly increased microcirculatory blood flow and tissue oxygen tension in healthy and injured colon compared to goal-directed or restricted crystalloid fluid therapy.
Resumo:
The deterioration of performance over time is characteristic for sustained attention tasks. This so-called "performance decrement" is measured by the increase of reaction time (RT) over time. Some behavioural and neurobiological mechanisms of this phenomenon are not yet fully understood. Behaviourally, we examined the increase of RT over time and the inter-individual differences of this performance decrement. On the neurophysiological level, we investigated the task-relevant brain areas where neural activity was modulated by RT and searched for brain areas involved in good performance (i.e. participants with no or moderate performance decrement) as compared to poor performance (i.e. participants with a steep performance decrement). For this purpose, 20 healthy, young subjects performed a carefully designed task for simple sustained attention, namely a low-demanding version of the Rapid Visual Information Processing task. We employed a rapid event-related functional magnetic resonance imaging (fMRI) design. The behavioural results showed a significant increase of RT over time in the whole group, and also revealed that some participants were not as prone to the performance decrement as others. The latter was statistically significant comparing good versus poor performers. Moreover, high BOLD-responses were linked to longer RTs in a task-relevant bilateral fronto-cingulate-insular-parietal network. Among these regions, good performance was associated with significantly higher RT-BOLD correlations in the pre-supplementary motor area (pre-SMA). We concluded that the task-relevant bilateral fronto-cingulate-insular-parietal network was a cognitive control network responsible for goal-directed attention. The pre-SMA in particular might be associated with the performance decrement insofar that good performers could sustain activity in this brain region in order to monitor performance declines and adjust behavioural output.
Resumo:
External circumstances and internal bodily states often change and require organisms to flexibly adapt valuation processes to select the optimal action in a given context. Here, we investigate the neurobiology of context-dependent valuation in 22 human subjects using functional magnetic resonance imaging. Subjects made binary choices between visual stimuli with three attributes (shape, color, and pattern) that were associated with monetary values. Context changes required subjects to deviate from the default shape valuation and to integrate a second attribute in order to comply with the goal to maximize rewards. Critically, this binary choice task did not involve any conflict between opposing monetary, temporal, or social preferences. We tested the hypothesis that interactions between regions of dorsolateral and ventromedial prefrontal cortex (dlPFC; vmPFC) implicated in self-control choices would also underlie the more general function of context-dependent valuation. Consistent with this idea, we found that the degree to which stimulus attributes were reflected in vmPFC activity varied as a function of context. In addition, activity in dlPFC increased when context changes required a reweighting of stimulus attribute values. Moreover, the strength of the functional connectivity between dlPFC and vmPFC was associated with the degree of context-specific attribute valuation in vmPFC at the time of choice. Our findings suggest that functional interactions between dlPFC and vmPFC are a key aspect of context-dependent valuation and that the role of this network during choices that require self-control to adjudicate between competing outcome preferences is a specific application of this more general neural mechanism.
Resumo:
CONTEXT Enhanced Recovery after Surgery (ERAS) programs are multimodal care pathways that aim to decrease intra-operative blood loss, decrease postoperative complications, and reduce recovery times. OBJECTIVE To overview the use and key elements of ERAS pathways, and define needs for future clinical trials. EVIDENCE ACQUISITION A comprehensive systematic MEDLINE search was performed for English language reports published before May 2015 using the terms "postoperative period," "postoperative care," "enhanced recovery after surgery," "enhanced recovery," "accelerated recovery," "fast track recovery," "recovery program," "recovery pathway", "ERAS," and "urology" or "cystectomy" or "urologic surgery." EVIDENCE SYNTHESIS We identified 18 eligible articles. Patient counseling, physical conditioning, avoiding excessive alcohol and smoking, and good nutrition appeared to protect against postoperative complications. Fasting from solid food for only 6h and perioperative liquid-carbohydrate loading up to 2h prior to surgery appeared to be safe and reduced recovery times. Restricted, balanced, and goal-directed fluid replacement is effective when individualized, depending on patient morbidity and surgical procedure. Decreased intraoperative blood loss may be achieved by several measures. Deep vein thrombosis prophylaxis, antibiotic prophylaxis, and thermoregulation were found to help reduce postsurgical complications, as was a multimodal approach to postoperative nausea, vomiting, and analgesia. Chewing gum, prokinetic agents, oral laxatives, and an early resumption to normal diet appear to aid faster return to normal bowel function. Further studies should compare anesthetic protocols, refine analgesia, and evaluate the importance of robot-assisted surgery and the need/timing for drains and catheters. CONCLUSIONS ERAS regimens are multidisciplinary, multimodal pathways that optimize postoperative recovery. PATIENT SUMMARY This review provides an overview of the use and key elements of Enhanced Recovery after Surgery programs, which are multimodal, multidisciplinary care pathways that aim to optimize postoperative recovery. Additional conclusions include identifying effective procedures within Enhanced Recovery after Surgery programs and defining needs for future clinical trials.
Resumo:
Introduction Low central venous oxygen saturation (ScvO2) has been associated with increased risk of postoperative complications in high-risk surgery. Whether this association is centre-specific or more generalisable is not known. The aim of this study was to assess the association between peri- and postoperative ScvO2 and outcome in high-risk surgical patients in a multicentre setting. Methods Three large European university hospitals (two in Finland, one in Switzerland) participated. In 60 patients with intra-abdominal surgery lasting more than 90 minutes, the presence of at least two of Shoemaker's criteria, and ASA (American Society of Anesthesiologists) class greater than 2, ScvO2 was determined preoperatively and at two hour intervals during the operation until 12 hours postoperatively. Hospital length of stay (LOS) mortality, and predefined postoperative complications were recorded. Results The age of the patients was 72 ± 10 years (mean ± standard deviation), and simplified acute physiology score (SAPS II) was 32 ± 12. Hospital LOS was 10.5 (8 to 14) days, and 28-day hospital mortality was 10.0%. Preoperative ScvO2 decreased from 77% ± 10% to 70% ± 11% (p < 0.001) immediately after surgery and remained unchanged 12 hours later. A total of 67 postoperative complications were recorded in 32 patients. After multivariate analysis, mean ScvO2 value (odds ratio [OR] 1.23 [95% confidence interval (CI) 1.01 to 1.50], p = 0.037), hospital LOS (OR 0.75 [95% CI 0.59 to 0.94], p = 0.012), and SAPS II (OR 0.90 [95% CI 0.82 to 0.99], p = 0.029) were independently associated with postoperative complications. The optimal value of mean ScvO2 to discriminate between patients who did or did not develop complications was 73% (sensitivity 72%, specificity 61%). Conclusion Low ScvO2 perioperatively is related to increased risk of postoperative complications in high-risk surgery. This warrants trials with goal-directed therapy using ScvO2 as a target in high-risk surgery patients.
Resumo:
Background: ASSIP is a manualized brief therapy based on a model of suicide as goal-directed action, aimed at establishing a therapeutic alliance in a patient-oriented, collaborative approach. The main goals of the three-session program ASSIP are for patients to understand, from an observer’s position, patterns leading to a suicidal crisis, recognize triggers and warning signs, and to establish individual safety strategies for future suicidal crises. An ongoing therapeutic support is provided with regular letters over 24 months. Method: The study was conducted in a naturalistic setting. 120 Patients were randomly assigned to an intervention group (60 participants) treated with ASSIP combined with follow-up contact through letters, and a control group (60 participants) receiving a single session of clinical assessment. Both groups had treatment as usual. Patients completed a set of psychosocial and clinical questionnaires every six months over a period of 24 months. Results: In the ASSIP group 5 patients made a total of 5 reattempts, compared to 15 patients with 41 reattempts in the control group. The survival analysis yielded a significant difference with a Wald Chi2 of .000003. The ASSIP group had significantly lower suicidal ideation and fewer days of inpatient treatment compared to the control group. Higher scores in the Penn Helping Alliance Questionnaire were associated with lower suicidal ideation during follow-up. Conclusions: ASSIP is a highly effective brief therapy for patients with recent suicide attempts. Forming a strong therapeutic alliance is considered to be a major factor for outcome. ASSIP can be used with minimal training by experienced therapists. An English version of the manual will be published in May 2015.
Resumo:
BACKGROUND Intravenous fluids are commonly prescribed in childhood. 0.9 % saline is the most-used fluid in pediatrics as resuscitation or maintenance solution. Experimental studies and observations in adults suggest that 0.9 % saline is a poor candidate for fluid resuscitation. Although anesthesiologists, intensive care specialists, perioperative physicians and nephrologists have been the most active in this debate, this issue deserves some physiopathological considerations also among pediatricians. RESULTS As compared with so-called "balanced" salt crystalloids such as lactated Ringer, administration of large volumes of 0.9 % saline has been associated with following deleterious effects: tendency to hyperchloremic metabolic acidosis (called dilution acidosis); acute kidney injury with reduced urine output and salt retention; damaged vascular permeability and stiffness, increase in proinflammatory mediators; detrimental effect on coagulation with tendency to blood loss; detrimental gastrointestinal perfusion and function; possible uneasiness at the bedside resulting in unnecessary administration of more fluids. Nevertheless, there is no firm evidence that these adverse effects are clinically relevant. CONCLUSIONS Intravenous fluid therapy is a medicine like insulin, chemotherapy or antibiotics. Prescribing fluids should fit the child's history and condition, consider the right dose at the right rate as well as the electrolyte levels and other laboratory variables. It is unlikely that a single type of fluid will be suitable for all pediatric patients. "Balanced" salt crystalloids, although more expensive, should be preferred for volume resuscitation, maintenance and perioperatively. Lactated Ringer appears unsuitable for patients at risk for brain edema and for those with overt or latent chloride-deficiency. Finally, in pediatrics there is a need for new fluids to be developed on the basis of a better understanding of the physiology and to be tested in well-designed trials.
Resumo:
Paul Grice distinguishes between natural meaning and non-natural meaning, where the first notion is especially connected to something’s being a natural sign and the second to communication. It is argued that some of the arguments against the distinction being exhaustive are based on a misinterpretation of Grice, but also that the distinction cannot be exhaustive if one takes into account both the criterion of factivity and the connection to communication. If one makes a distinction between natural and non-natural communication, then there are different types of natural communication to be distinguished: goal-directed communication, intentional communication and open intentional communication. Given the empirical evidence, the behavior of chimpanzees and of human infants may be described as goal-directed communication, but there are also important differences between the communicative behavior of the two.
Resumo:
A major goal of antiretroviral therapy (ART) for HIV-1-infected persons is the recovery of CD4 T lymphocytes, resulting in thorough protection against opportunistic complications. Interruptions of ART are still frequent. The long-term effect on CD4 T-cell recovery and clinical events remains unknown.
Resumo:
We examined 66 cats with salinomycin intoxication. Salinomycin caused different LMN signs of varying degrees of severity in all cases. Changes in blood work were unspecific, with the most frequent being increased serum creatine kinase activity, leukocytosis, and increased liver enzymes. Pathological electrodiagnostic findings: fibrillation potentials and positive sharp waves were detected in 10 cases, motor nerve conductance velocity was mildly decreased in 8/12 cats, and sensory nerve conductance velocity and repetitive nerve stimulation were normal in all examined cases. In five cases the peripheral neuropathy was confirmed by pathohistology. Fluid therapy and supportive care were used as therapy and 52 cats recovered completely. The probability for complete remission was significantly different between mildly and severely affected cases. It seems that the severity of clinical signs and prognosis correlate well with the amount of toxin ingested. We conclude that early recognition and decontamination combined with supportive care results in complete recovery.
Resumo:
Objective: Description of a cat with ischemic muscle necrosis that suffered from cardiopulmonary arrest due to hyperkalemia. Pathogenesis, clinical signs and therapy of ischemic muscle necrosis are discussed and possible causes, symptoms and treatment of hyperkalemia are shown. Material and methods: case report of a four-year-old male castrated domestic shorthair cat. Results: The cat was successfully resuscitated and hyperkalemia was treated with different treatment modalities. Conclusion: Ischemic muscle necrosis can lead to severe live-threatening hyperkalemia which has to be anticipated, monitored and treated adequately. Aggressive fluid therapy might be responsible for a higher risk of hyperkalemia in predisposed cases. Clinical relevance: Potassium concentrations and acid-base disturbances must be closely monitored in patients with ischemic muscle necrosis