4 resultados para Glossary
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Here we present, for the first time, a glossary of biometeorological terms. The glossary aims to address the need for a reliable source of biometeorological definitions, thereby facilitating communication and mutual understanding in this rapidly expanding field. A total of 171 terms are defined, with reference to 234 citations. It is anticipated that the glossary will be revisited in coming years, updating terms and adding new terms, as appropriate. The glossary is intended to provide a useful resource to the biometeorology community, and to this end, readers are encouraged to contact the lead author to suggest additional terms for inclusion in later versions of the glossary as a result of new and emerging developments in the field.
Resumo:
The central nervous system (CNS) is an immunologically privileged site to which access of circulating immune cells is tightly controlled by the endothelial blood-brain barrier (BBB; see Glossary) localized in CNS microvessels, and the epithelial blood-cerebrospinal fluid barrier (BCSFB) within the choroid plexus. As a result of the specialized structure of the CNS barriers, immune cell entry into the CNS parenchyma involves two differently regulated steps: migration of immune cells across the BBB or BCSFB into the cerebrospinal fluid (CSF)-drained spaces of the CNS, followed by progression across the glia limitans into the CNS parenchyma. With a focus on multiple sclerosis (MS) and its animal models, this review summarizes the distinct molecular mechanisms required for immune cell migration across the different CNS barriers.
Resumo:
Whether interspecific hybridization is important as a mechanism that generates biological diversity is a matter of controversy. Whereas some authors focus on the potential of hybridization as a source of genetic variation, functional novelty and new species, others argue against any important role, because reduced fitness would typically render hybrids an evolutionary dead end. By drawing on recent developments in the genetics and ecology of hybridization and on principles of ecological speciation theory, I develop a concept that reconciles these views and adds a new twist to this debate. Because hybridization is common when populations invade new environments and potentially elevates rates of response to selection, it predisposes colonizing populations to rapid adaptive diversification under disruptive or divergent selection. I discuss predictions and suggest tests of this hybrid swarm theory of adaptive radiation and review published molecular phylogenies of adaptive radiations in light of the theory. Some of the confusion about the role of hybridization in evolutionary diversification stems from the contradiction between a perceived necessity for cessation of gene flow to enable adaptive population differentiation on the one hand [1], and the potential of hybridization for generating adaptive variation, functional novelty and new species 2, 3 and 4 on the other. Much progress in the genetics 5, 6, 7, 8 and 9 and ecology of hybridization 9, 10 and 11, and in our understanding of the role of ecology in speciation (see Glossary) 12, 13 and 14 make a re-evaluation timely. Whereas botanists traditionally stressed the diversity-generating potential of hybridization 2, 3 and 14, zoologists traditionally saw it as a process that limits diversification [1] and refer to it mainly in the contexts of hybrid zones (Box 1) and reinforcement of reproductive isolation [15]. Judging by the wide distribution of allopolyploidy among plants, many plant species might be of direct hybrid origin or descended from a hybrid species in the recent past [16]. The ability to reproduce asexually might explain why allopolyploid hybrid species are more common in plants than in animals. Allopolyploidy arises when meiotic mismatch of parental chromosomes or karyotypes causes hybrid sterility. Mitotic error, duplicating the karyotype, can restore an asexually maintained hybrid line to fertility. Although bisexual allopolyploid hybrid species are not uncommon in fish [17] and frogs [18], the difficulty with which allopolyploid animals reproduce, typically requiring gynogenesis[19], makes establishment and survival of allopolyploid animal species difficult.