47 resultados para Global Dynamics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated ≈6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500–3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.
Resumo:
Humankind today is challenged by numerous threats brought about by the speed and scope of global change dynamics. A concerted and informed approach to solutions is needed to face the severity and magnitude of current development problems. Generating shared knowledge is a key to addressing global challenges. This requires developing the ability to cross multiple borders wherever radically different understandings of issues such as health and environmental sanitation, governance and conflict, livelihood options and globalisation, and natural resources and development exist. Global Change and Sustainable Development presents 36 peer-reviewed articles written by interdisciplinary teams of authors who reflected on results of development-oriented research conducted from 2001 to 2008. Scientific activities were – and continue to be – carried out in partnerships involving people and institutions in the global North, South and East, guided by principles of sustainability. The articles seek to inform solutions for mitigating, or adapting to, the negative impacts of global dynamics in the social, political, ecological, institutional and economic spheres.
Sustainable regional development: Reconciling global and local dynamics and stakes in the Swiss Alps
Resumo:
This article explores how global and local dynamics and stakes can be brought together when trying to combine conservation and regional development. For this purpose we analyse a series of studies carried out in the area of the Swiss Alps Jungfrau-Aletsch World Heritage Site (WHS). The approaches used in these studies to analyse the diversity and development of the region included data collection and evaluation of indicators such as population development, number of working places, occupation rates in various economic sectors and commuter balance, as well as interviews with key informants and assessment of existing planning tools. The major challenge of the newly declared World Heritage Region is that it is neither a political or administrative nor a cultural unit but constitutes a completely new type of space that breaks up and crosses traditional boundaries. The studies revealed an economic tertiarisation process and migration of the population from remote areas to regional centres. Tourism was identified as the key economic sector in the region. Regarding regional sustainability, the studies identified a need for quality dialogue and negotiation of interests and stakes. It was shown that in dealing with sustainability at the local level, many key issues cannot be resolved on the ground, as they depend on regional or national decisions, e.g. the conditions for tourism promotion in the region or economic validation of agricultural activity. We conclude from these findings that national or even international factors do not provide a basis for location-specific solutions, as they are often too general, and that the global label does not ensure sustainability in a designated WHS region; this depends entirely on local and regional dynamics.
Resumo:
Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Earlier modelling studies have mostly relied on fixed prescribed peatland maps and inundation time series of limited temporal coverage. Here, we describe and assess the the Dynamical Peatland Model Based on TOPMODEL (DYPTOP), which predicts the extent of inundation based on a computationally efficient TOPMODEL implementation. This approach rests on an empirical, grid-cell-specific relationship between the mean soil water balance and the flooded area. DYPTOP combines the simulated inundation extent and its temporal persistency with criteria for the ecosystem water balance and the modelled peatland-specific soil carbon balance to predict the global distribution of peatlands. We apply DYPTOP in combination with the LPX-Bern DGVM and benchmark the global-scale distribution, extent, and seasonality of inundation against satellite data. DYPTOP successfully predicts the spatial distribution and extent of wetlands and major boreal and tropical peatland complexes and reveals the governing limitations to peatland occurrence across the globe. Peatlands covering large boreal lowlands are reproduced only when accounting for a positive feedback induced by the enhanced mean soil water holding capacity in peatland-dominated regions. DYPTOP is designed to minimize input data requirements, optimizes computational efficiency and allows for a modular adoption in Earth system models.
Resumo:
Recent advances have revealed that during exogenous airway challenge, airway diameters can not be adequately predicted by their initial diameters. Furthermore, airway diameters can also vary greatly in time on scales shorter than a breath. In order to better understand these phenomena, we developed a multiscale model which allows us to simulate aerosol challenge in the airways during ventilation. The model incorporates agonist-receptor binding kinetics to govern the temporal response of airway smooth muscle (ASM) contraction on individual airway segments, which together with airway wall mechanics, determines local airway caliber. Global agonist transport and deposition is coupled with pressure-driven flow, linking local airway constrictions with global flow dynamics. During the course of challenge, airway constriction alters the flow pattern, redistributing agonist to less constricted regions. This results in a negative feedback which may be a protective property of the normal lung. As a consequence, repetitive challenge can cause spatial constriction patterns to evolve in time, resulting in a loss of predictability of airway diameters. Additionally, the model offers new insight into several phenomena including the intra- and inter-breath dynamics of airway constriction throughout the tree structure.
Resumo:
Access and accessibility are important determinants of people’s ability to utilise natural resources, and have a strong impact on household welfare. Physical accessibility of natural resources, on the other hand, has generally been regarded as one of the most important drivers of land-use and land-cover changes. Based on two case studies, this article discusses evidence of the impact of access to services and access to natural resources on household poverty and on the environment. We show that socio-cultural distances are a key limiting factor for gaining access to services, and thereby for improved household welfare. We also discuss the impact of socio-cultural distances on access to natural resources, and show that large-scale commercial exploitation of natural resources tends to occur beyond the spatial reach of socio-culturally and economically marginalised population segments. We conclude that it is essential to pay more attention to improving the structural environment that presently leaves social minority groups marginalised. Innovative approaches that use natural resource management to induce poverty reduction – for example, through compensation of local farmers for environmental services – appear to be promising avenues that can lead to integration of the objectives of poverty reduction and sustainable environmental stewardship.
Resumo:
The immune system exhibits an enormous complexity. High throughput methods such as the "-omic'' technologies generate vast amounts of data that facilitate dissection of immunological processes at ever finer resolution. Using high-resolution data-driven systems analysis, causal relationships between complex molecular processes and particular immunological phenotypes can be constructed. However, processes in tissues, organs, and the organism itself (so-called higher level processes) also control and regulate the molecular (lower level) processes. Reverse systems engineering approaches, which focus on the examination of the structure, dynamics and control of the immune system, can help to understand the construction principles of the immune system. Such integrative mechanistic models can properly describe, explain, and predict the behavior of the immune system in health and disease by combining both higher and lower level processes. Moving from molecular and cellular levels to a multiscale systems understanding requires the development of methodologies that integrate data from different biological levels into multiscale mechanistic models. In particular, 3D imaging techniques and 4D modeling of the spatiotemporal dynamics of immune processes within lymphoid tissues are central for such integrative approaches. Both dynamic and global organ imaging technologies will be instrumental in facilitating comprehensive multiscale systems immunology analyses as discussed in this review.
Resumo:
The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas. This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active, resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.