96 resultados para Glia de Bergmann e Cerebelo

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined the mechanism by which bacterial cell walls from two gram-positive meningeal pathogens, Streptococcus pneumoniae and the group B streptococcus, induced neuronal injury in primary cultures of rat brain cells. Cell walls from both organisms produced cellular injury to similar degrees in pure astrocyte cultures but not in pure neuronal cultures. Cell walls also induced nitric oxide production in cultures of astrocytes or microglia. When neurons were cultured together with astrocytes or microglia, the cell walls of both organisms became toxic to neurons. L-NAME, a nitric oxide synthase inhibitor, protected neurons from cell wall-induced toxicity in mixed cultures with glia, as did dexamethasone. In contrast, an excitatory amino acid antagonist (MK801) had no effect. Low concentrations of cell walls from either gram-positive pathogen added together with the excitatory amino acid glutamate resulted in synergistic neurotoxicity that was inhibited by L-NAME. The induction of nitric oxide production and neurotoxicity by cell walls was independent of the presence of serum, whereas endotoxin exhibited these effects only in the presence of serum. We conclude that gram-positive cell walls can cause toxicity in neurons by inducing the production of nitric oxide in astrocytes and microglia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinct glial cell types of the vertebrate peripheral nervous system (PNS) are derived from the neural crest. Here we show that the expression of the Ets domain transcription factor Erm distinguishes satellite glia from Schwann cells beginning early in rat PNS development. In developing dorsal root ganglia (DRG), Erm is present both in presumptive satellite glia and in neurons. In contrast, Erm is not detectable at any developmental stage in Schwann cells in peripheral nerves. In addition, Erm is downregulated in DRG-derived glia adopting Schwann cell traits in culture. Thus, Erm is the first described transcription factor expressed in satellite glia but not in Schwann cells. In culture, the Neuregulin1 (NRG1) isoform GGF2 maintains Erm expression in presumptive satellite cells and reinduces Erm expression in DRG-derived glia but not in Schwann cells from sciatic nerve. These data demonstrate that there are intrinsic differences between these glial subtypes in their response to NRG1 signaling. In neural crest cultures, Erm-positive progenitor cells give rise to two distinct glial subtypes: Erm-positive, Oct-6-negative satellite glia in response to GGF2, and Erm-negative, Oct-6-positive Schwann cells in the presence of serum and the adenylate cyclase activator forskolin. Thus, Erm-positive neural crest-derived progenitor cells and presumptive satellite glia are able to acquire Schwann cell features. Given the in vivo expression of Erm in peripheral ganglia, we suggest that ganglionic Erm-positive cells may be precursors of Schwann cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neolymphangiogenesis has recently been demonstrated in transplanted kidneys as well as in chronic interstitial nephritis and IgA nephropathy. However, its significance in kidney disease remains to be defined and a systematic study of renal lymphangiogenesis is warranted. We investigated patients with multiple myeloma (MM) presenting in the great majority with acute renal insufficiency. Controls were allograft kidney donors and patients with renal insufficiency due to acute renal failure (ARF). Lymph vessel length density (LVD) was quantified immunohistochemically by means of antipodoplanin staining followed by computer-assisted stereology. The mean LVD in kidneys of patients with MM (23.19 mm(-2)) was higher when compared with allograft donors (7.42 mm(-2), P = 0.0003) and patients with ARF (6.78 mm(-2), P = 0.0002). The higher LVD was significantly associated with interstitial inflammation, and the newly formed lymph vessels were accompanied by diffuse and nodular interstitial infiltrates composed mainly of CD20(+) B cells and CD27(+) plasma cells. The infiltrates in patients with MM also displayed a higher expression of the B-cell chemoattractant CXCL13. These results demonstrate for the first time that lymphangiogenesis is a prominent feature in MM kidneys and that it is associated with a significant accumulation of macrophages, CD20(+) and CD27(+) B lymphocytes. Further studies should clarify whether these changes represent a beneficial or detrimental factor in the progression of the myeloma-related kidney damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) induces chronic infection in 50% to 80% of infected persons; approximately 50% of these do not respond to therapy. We performed a genome-wide association study to screen for host genetic determinants of HCV persistence and response to therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Narcolepsy is a rare sleep disorder with the strongest human leukocyte antigen (HLA) association ever reported. Since the associated HLA-DRB1*1501-DQB1*0602 haplotype is common in the general population (15-25%), it has been suggested that it is almost necessary but not sufficient for developing narcolepsy. To further define the genetic basis of narcolepsy risk, we performed a genome-wide association study (GWAS) in 562 European individuals with narcolepsy (cases) and 702 ethnically matched controls, with independent replication in 370 cases and 495 controls, all heterozygous for DRB1*1501-DQB1*0602. We found association with a protective variant near HLA-DQA2 (rs2858884; P < 3 x 10(-8)). Further analysis revealed that rs2858884 is strongly linked to DRB1*03-DQB1*02 (P < 4 x 10(-43)) and DRB1*1301-DQB1*0603 (P < 3 x 10(-7)). Cases almost never carried a trans DRB1*1301-DQB1*0603 haplotype (odds ratio = 0.02; P < 6 x 10(-14)). This unexpected protective HLA haplotype suggests a virtually causal involvement of the HLA region in narcolepsy susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this study were to evaluate the anatomic feasibility of medial patellofemoral ligament (MPFL) reconstruction using a part of the adductor magnus tendon and to identify possible risks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the technical feasibility of harvesting a vascularized bone graft from the acromion pedicled on the acromial branch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contributions of donor- and recipient-related factors to renal allograft hemodynamics are difficult to dissect due to methodological reasons. We analyzed 28 pairs of kidneys (each pair from the same donor) transplanted to 56 different recipients in order to define the contributions of the donor and the recipient to allograft hemodynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS.