40 resultados para Gesture interfaces
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Only few standardized apraxia scales are available and they do not cover all domains and semantic features of gesture production. Therefore, the objective of the present study was to evaluate the reliability and validity of a newly developed test of upper limb apraxia (TULIA), which is comprehensive and still short to administer. METHODS: The TULIA consists of 48 items including imitation and pantomime domain of non-symbolic (meaningless), intransitive (communicative) and transitive (tool related) gestures corresponding to 6 subtests. A 6-point scoring method (0-5) was used (score range 0-240). Performance was assessed by blinded raters based on videos in 133 stroke patients, 84 with left hemisphere damage (LHD) and 49 with right hemisphere damage (RHD), as well as 50 healthy subjects (HS). RESULTS: The clinimetric findings demonstrated mostly good to excellent internal consistency, inter- and intra-rater (test-retest) reliability, both at the level of the six subtests and at individual item level. Criterion validity was evaluated by confirming hypotheses based on the literature. Construct validity was demonstrated by a high correlation (r = 0.82) with the De Renzi-test. CONCLUSION: These results show that the TULIA is both a reliable and valid test to systematically assess gesture production. The test can be easily applied and is therefore useful for both research purposes and clinical practice.
Resumo:
The traditional view of a predominant inferior parietal representation of gestures has been recently challenged by neuroimaging studies demonstrating that gesture production and discrimination may critically depend on inferior frontal lobe function. The aim of the present work was therefore to investigate the effect of transient disruption of these brain sites by continuous theta burst stimulation (cTBS) on gesture production and recognition.
Resumo:
Biological homochirality on earth and its tremendous consequences for pharmaceutical science and technology has led to an ever increasing interest in the selective production, the resolution and the detection of enantiomers of a chiral compound. Chiral surfaces and interfaces that can distinguish between enantiomers play a key role in this respect as enantioselective catalysts as well as for separation purposes. Despite the impressive progress in these areas in the last decade, molecular-level understanding of the interactions that are at the origin of enantiodiscrimination are lagging behind due to the lack of powerful experimental techniques to spot these interactions selectively with high sensitivity. In this article, techniques based on infrared spectroscopy are highlighted that are able to selectively target the chiral properties of interfaces. In particular, these methods are the combination of Attenuated Total Reflection InfraRed (ATR-IR) with Modulation Excitation Spectroscopy (MES) to probe enantiodiscriminating interactions at chiral solid-liquid interfaces and Vibrational Circular Dichroism (VCD), which is used to probe the structure of chirally-modified metal nanoparticles. The former technique aims at suppressing signals arising from non-selective interactions, which may completely hide the signals of interest due to enantiodiscriminating interactions. Recently, this method was successfully applied to investigate enantiodiscrimination at self-assembled monolayers of chiral thiols on gold surfaces. The nanometer size analogues of the latter--gold nanoparticles protected by a monolayer of a chiral thiol--are amenable to VCD spectroscopy. It is shown that this technique yields detailed structural information on the adsorption mode and the conformation of the adsorbed thiol. This may also turn out to be useful to clarify how chirality can be bestowed onto the metal core itself and the nature of the chirality of the latter, which is manifested in the metal-based circular dichroism activity of these nanoparticles.
Resumo:
The number of large research networks and programmes engaging in knowledge production for development has grown over the past years. One of these programmes devoted to generating knowledge about and for development is National Centre of Competence in Research (NCCR) North–South, a cross-disciplinary, international development research network funded by the Swiss Agency for Development and Cooperation and the Swiss National Science Foundation. Producing relevant knowledge for development is a core goal of the programme and an important motivation for many of the participating researchers. Over the years, the researchers have made use of various spaces for exchange and instruments for co-production of knowledge by academic and non-academic development actors. In this article we explore the characteristics of co-producing and sharing knowledge in interfaces between development research, policy and NCCR North–South practice. We draw on empirical material of the NCCR North–South programme and its specific programme element of the Partnership Actions. Our goal is to make use of the concept of the interface to reflect critically about the pursued strategies and instruments applied in producing and sharing knowledge for development across boundaries.
Resumo:
Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.