10 resultados para Geospatial data
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The Swiss Swiss Consultant Trust Fund (CTF) support covered the period from July to December 2007 and comprised four main tasks: (1) Analysis of historic land degradation trends in the four watersheds of Zerafshan, Surkhob, Toirsu, and Vanj; (2) Translation of standard CDE GIS training materials into Russian and Tajik to enable local government staff and other specialists to use geospatial data and tools; (3) Demonstration of geospatial tools that show land degradation trends associated with land use and vegetative cover data in the project areas, (4) Preliminary training of government staff in using appropriate data, including existing information, global datasets, inexpensive satellite imagery and other datasets and webbased visualization tools like spatial data viewers, etc. The project allowed building of local awareness of, and skills in, up-to-date, inexpensive, easy-to-use GIS technologies, data sources, and applications relevant to natural resource management and especially to sustainable land management. In addition to supporting the implementation of the World Bank technical assistance activity to build capacity in the use of geospatial tools for natural resource management, the Swiss CTF support also aimed at complementing the Bank supervision work on the ongoing Community Agriculture and Watershed Management Project (CAWMP).
Resumo:
The sustainable management of natural resources is a key issue for sustainable development of a poor, mountainous country such as Tajikistan. In order to strengthen its agricultural and infrastructural development efforts and alleviate poverty in rural areas, spatial information and analysis are of crucial importance to improve priority setting and decision making efficiency. However, poor access to geospatial data and tools, and limited capacity in their use has greatly constrained the ability of governmental institutions to effectively assess, plan, and monitor natural resources management. The Centre for Development and Environment (CDE) has thus been mandated by the World Bank Group to provide adequate technical support to the Community Agriculture and Watershed Management Project (CAWMP). This support consists of a spatial database on soil degradation trends in 4 watersheds, capacity development in and awareness creation about geographic information technology and a spatial data exchange hub for natural resources management in Tajikistan. CDE’s support has started in July 2007 and will last until December 2007 with a possible extension in 2008.
Resumo:
This paper analyses local geographical contexts targeted by transnational large-scale land acquisitions (>200 ha per deal) in order to understand how emerging patterns of socio-ecological characteristics can be related to processes of large-scale foreign investment in land. Using a sample of 139 land deals georeferenced with high spatial accuracy, we first analyse their target contexts in terms of land cover, population density, accessibility, and indicators for agricultural potential. Three distinct patterns emerge from the analysis: densely populated and easily accessible croplands (35% of land deals); remote forestlands with lower population densities (34% of land deals); and moderately populated and moderately accessible shrub- or grasslands (26% of land deals). These patterns are consistent with processes described in the relevant case study literature, and they each involve distinct types of stakeholders and associated competition over land. We then repeat the often-cited analysis that postulates a link between land investments and target countries with abundant so-called “idle” or “marginal” lands as measured by yield gap and available suitable but uncultivated land; our methods differ from the earlier approach, however, in that we examine local context (10-km radius) rather than countries as a whole. The results show that earlier findings are disputable in terms of concepts, methods, and contents. Further, we reflect on methodologies for exploring linkages between socioecological patterns and land investment processes. Improving and enhancing large datasets of georeferenced land deals is an important next step; at the same time, careful choice of the spatial scale of analysis is crucial for ensuring compatibility between the spatial accuracy of land deal locations and the resolution of available geospatial data layers. Finally, we argue that new approaches and methods must be developed to empirically link socio-ecological patterns in target contexts to key determinants of land investment processes. This would help to improve the validity and the reach of our findings as an input for evidence-informed policy debates.
Resumo:
The Centre for Development and Environment (CDE) has been contracted by the World Bank Group to conduct a program on capacity development in use of geospatial tools for natural resource management in Tajikistan. The program aimed to help improving natural resource management by fostering the use of geospatial tools among governmental and non-governmental institutions in Tajikistan. For this purpose a database including a Geographic Information System (GIS) has been prepared, which combines spatial data on various sectors for case study analysis related to the Community Agriculture and Watershed Management Project (CAWMP). The inception report is based on the findings resulting from the Swiss Consultant Trust Fund (CTF) financed project, specifically on the experiences from the awareness creation and training workshop conducted in Dushanbe in November 2007 and the analysis of historical land degradation trends carried out for the four CAWMP watersheds. Furthermore, also recommendations from the inception mission of CDE to Tajikistan (5-20 August 2007) and the inception report for the Swiss CTF support were considered. The inception report for the BNWPP project (The Bank-Netherlands Water Partnership Program) discusses the following project relevant issues: (1) Preliminary list of additional data layers, types of data analysis, and audiences to be covered by BNWPP grant (2) Assessing skills and equipment already available within Tajikistan, and implications for training program and specific equipment procurement plans (3) Updated detailed schedule and plans for all activities to be financed by BNWPP grant, and (4) Proposed list of contents for the final report and web-based presentations.
Resumo:
This paper examines how the geospatial accuracy of samples and sample size influence conclusions from geospatial analyses. It does so using the example of a study investigating the global phenomenon of large-scale land acquisitions and the socio-ecological characteristics of the areas they target. First, we analysed land deal datasets of varying geospatial accuracy and varying sizes and compared the results in terms of land cover, population density, and two indicators for agricultural potential: yield gap and availability of uncultivated land that is suitable for rainfed agriculture. We found that an increase in geospatial accuracy led to a substantial and greater change in conclusions about the land cover types targeted than an increase in sample size, suggesting that using a sample of higher geospatial accuracy does more to improve results than using a larger sample. The same finding emerged for population density, yield gap, and the availability of uncultivated land suitable for rainfed agriculture. Furthermore, the statistical median proved to be more consistent than the mean when comparing the descriptive statistics for datasets of different geospatial accuracy. Second, we analysed effects of geospatial accuracy on estimations regarding the potential for advancing agricultural development in target contexts. Our results show that the target contexts of the majority of land deals in our sample whose geolocation is known with a high level of accuracy contain smaller amounts of suitable, but uncultivated land than regional- and national-scale averages suggest. Consequently, the more target contexts vary within a country, the more detailed the spatial scale of analysis has to be in order to draw meaningful conclusions about the phenomena under investigation. We therefore advise against using national-scale statistics to approximate or characterize phenomena that have a local-scale impact, particularly if key indicators vary widely within a country.