82 resultados para George, Stefan Anton, 1868-1933.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Percutaneous nephrolithotomy (PCNL) for the treatment of renal stones and other related renal diseases has proved its efficacy and has stood the test of time compared with open surgical methods and extracorporal shock wave lithotripsy. However, access to the collecting system of the kidney is not easy because the available intra-operative image modalities only provide a two dimensional view of the surgical scenario. With this lack of visual information, several punctures are often necessary which, increases the risk of renal bleeding, splanchnic, vascular or pulmonary injury, or damage to the collecting system which sometimes makes the continuation of the procedure impossible. In order to address this problem, this paper proposes a workflow for introduction of a stereotactic needle guidance system for PCNL procedures. An analysis of the imposed clinical requirements, and a instrument guidance approach to provide the physician with a more intuitive planning and visual guidance to access the collecting system of the kidney are presented.
Resumo:
The objective of the study was to determine the feasibility of generating a biodegradable, stem cell-loaded osteogenic composite graft from human placenta. Initially, a scaffold from human chorion membrane was produced. Human placenta mesenchymal stem cells (MSCs) derived from either first-trimester chorionic villi or term chorion membrane were differentiated osteogenically on this scaffold. Outgrowth, adherence, and osteogenic differentiation of cells were assessed by immunohistochemistry (IHC), scanning electron microscopy, protein expression, and real-time polymerase chain reaction (RT-PCR). Our results showed that a cell-free extracellular matrix scaffold can be generated from human chorion. Seeded MSCs densely adhered to that scaffold and were osteogenically differentiated. Calcium and alkaline phosphatase were detected in the cell-scaffold constructs as a proof of mineralization and findings were confirmed by IHC and RT-PCR results. This study shows for the first time that generation of an osteogenic composite graft using placental tissue is feasible. It might allow therapeutic application of autologous or allogeneic grafts in congenital skeletal defects by means of a composite graft.
Resumo:
The aim of the study was to evaluate the impact of smoking on a prolongated chlorhexidine digluconate regimen after scaling and root planing. Forty-two smokers (test group) and 85 nonsmoking patients (control group) with generalized chronic periodontitis were examined for clinical attachment level (CAL), probing depth (PD), bleeding on probing (BoP), and Plaque Index (Pl) at baseline and after 1 and 3 months. During scaling and root planing, a 0.2% chlorhexidine digluconate solution and a 1% chlorhexidine digluconate gel were used. The subjects used a 0.2% chlorhexidine digluconate solution twice daily for 3 months. The Mann-Whitney U and Wilcoxon tests were used for statistical analysis. There were significant improvements of all studied variables after 1 and 3 months in both groups. After 3 months, the mean improvement in the test group was 1.62 mm for CAL, 2.85 mm for PD, and 48% for BoP; in the control group, the values were 2.18 mm for CAL, 2.81 mm for PD, and 47% for BoP. Only the maximum changes of CAL between 1 and 3 months (test group, 0.32 mm vs 0.69 mm in the control group) and PD (test group, 0.47 mm vs 0.76 mm in the control group) were significantly different between the groups (P < .05 and P = .05, respectively). The present data appear to suggest that the use of chlorhexidine digluconate twice daily during a period of 3 months following nonsurgical periodontal therapy may result in significant clinical improvements in smokers and nonsmokers.
Resumo:
Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.