15 resultados para Geomagnetic storm

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of climate change on storm surges including increased mean sea level change and the associated insurable losses are assessed for the North Sea basin. In doing so, the newly developed approach couples a dynamical storm surge model with a loss model. The key element of the approach is the generation of a probabilistic storm surge event set. Together with parametrizations of the inland propagation and the coastal protection failure probability this enables the estimation of annual expected losses. The sensitivity to the parametrizations is rather weak except when the assumption of high level of increased mean sea level change is made. Applying this approach to future scenarios shows a substantial increase of insurable losses with respect to the present day. Superimposing different mean sea level changes shows a nonlinear behavior at the country level, as the future storm surge changes are higher for Germany and Denmark. Thus, the study exhibits the necessity to assess the socio-economic impacts of coastal floods by combining the expected sea level rise with storm surge projections.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In February 1962, Hamburg experienced its most catastrophic storm surge event of the 20th century. This paper analyses the event using the Twentieth Century Reanalysis (20CR) dataset. Responsible for the major flood was a strong low pressure system centred over Scandinavia that was associated with strong north-westerly winds towards the German North Sea coast – the ideal storm surge situation for the Elbe estuary. A comparison of the 20CR dataset with observational data proves the applicability of the reanalysis data for this extreme event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A disastrous storm surge hit the coast of the Netherlands on 31 January and 1 February 1953. We examine the meteorological situation during this event using the Twentieth Century Reanalysis (20CR) data set. We find a strong pressure gradient between Ireland and northern Germany accompanied by strong north-westerly winds over the North Sea. Storm driven sea level rise combined with spring tide contributed to this extreme event. The state of the atmosphere in 20CR during this extreme event is in good agreement with historical observational data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 13 November 1872, the Baltic Sea coast from Denmark to Pomerania was devastated by an extreme storm surge caused by high winds. This is still the strongest surge on record, and understanding its development can contribute to improved risk assessment and protection. In this paper we trace this event in sea-level pressure and wind data from the “Twentieth Century Reanalysis” (20CR) and compare the results with other observation-based data sources. The analysis shows that, in the ensemble mean of 20CR, the general development is qualitatively well depicted, but with much reduced strength compared to other data sets. The same is true when selecting the ensemble member with maximum wind speeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five seismic units may be identified in the similar to 8 m thick Holocene sediment package at the bottom of the Blue Hole, a 120 m deep sinkhole located in the atoll lagoon of Lighthouse Reef, Belize. These units may be correlated with the succession of an existing 5.85-m-long sediment core that reaches back to 1385 kyrs BP. The identification of seismic units is based on the fact that uniform, fine-grained background sediments show weak reflections while alternating background and coarser-grained event (storm) beds exhibit strong reflections in the seismic profiles. The main source of sediments is the marginal atoll reef and adjacent lagoon area to the east and north. Northeasterly winds and storms transport sediment into the Blue Hole, as seen in the eastward increase in sediment thickness, i.e., the eastward shallowing of the Blue Hole. Previous assumptions of much thicker Holocene sediment packages in the Blue Hole could not be confirmed. So far, close to 6-m-long cores were retrieved from the Blue Hole but the base of the sedimentary succession remains to be recovered. The nature of the basal sediments is unknown but mid-Holocene and possibly older, Pleistocene sinkhole deposits can be expected. The number of event beds identified in the Blue Hole (n = 37) during a 1.385 kyr-long period and the number of cyclones listed in historical databases suggest that only strong hurricanes (categories 4 and 5) left event beds in the Blue Hole sedimentary succession. Storm beds are numerous during 13-0.9 kyrs BP and 0.8-0.5 kyrs BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geomagnetic excursions, i.e. short periods in time with much weaker geomagnetic fields and substantial changes in the position of the geomagnetic pole, occurred repeatedly in the Earth's history, e.g. the Laschamp event about 41 kyr ago. Although the next such excursion is certain to come, little is known about the timing and possible consequences for the state of the atmosphere and the ecosystems. Here we use the global chemistry climate model SOCOL-MPIOM to simulate the effects of geomagnetic excursions on atmospheric ionization, chemistry and dynamics. Our simulations show significantly increased concentrations of nitrogen oxides (NOx) in the entire stratosphere, especially over Antarctica (+15%), due to enhanced ionization by galactic cosmic rays. Hydrogen oxides (HOx) are also produced in greater amounts (up to +40%) in the tropical and subtropical lower stratosphere, while their destruction by reactions with enhanced NOx prevails over the poles and in high altitudes (by −5%). Stratospheric ozone concentrations decrease globally above 20 km by 1–2% and at the northern hemispheric tropopause by up to 5% owing to the accelerated NOx-induced destruction. A 5% increase is found in the southern lower stratosphere and troposphere. In response to these changes in ozone and the concomitant changes in atmospheric heating rates, the Arctic vortex intensifies in boreal winter, while the Antarctic vortex weakens in austral winter and spring. Surface wind anomalies show significant intensification of the southern westerlies at their poleward edge during austral winter and a pronounced northward shift in spring. Major impacts on the global climate seem unlikely.