48 resultados para Genomic data integration

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years, two paradigms underlying human evolution have crumbled. Modern humans have not totally replaced previous hominins without any admixture, and the expected signatures of adaptations to new environments are surprisingly lacking at the genomic level. Here we review current evidence about archaic admixture and lack of strong selective sweeps in humans. We underline the need to properly model differential admixture in various populations to correctly reconstruct past demography. We also stress the importance of taking into account the spatial dimension of human evolution, which proceeded by a series of range expansions that could have promoted both the introgression of archaic genes and background selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The onset of lactation in dairy cows represents a major metabolic challenge that involves large adaptations in glucose, fatty acid, and mineral metabolism to support lactation and to avoid metabolic dysfunction. The complex system of adaptation can differ considerably between cows, and may have a genetic base. In the present review, the variation in adaptive reactions in dairy cows is discussed. In these studies, the liver being a key metabolic regulator for understanding the variation in adaptive performance of the dairy cow was the main focus of research. Liver function was evaluated through gene expression measurements; to explain the associated phenotypic variability and to identify descriptors for metabolic robustness in dairy cows. Hence, the identified genes involved act as a connecting link between the genotype encoded on the DNA and the phenotypic expression of the target factors at a protein level. The integration of phenotypic data, including gene expression profiles, and genomic data will facilitate a better characterization of the complex interplay between these levels, and will improve the genetic understanding necessary to unravel a certain trait or multi-trait such as metabolic robustness in dairy cows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: ;Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast;genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.;Results: ;According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall;evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.;Conclusions: ;The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the;mechanism determining the molecular evolutionary rate at the genomic level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gap junctions are clustered channels between contacting cells through which direct intercellular communication via diffusion of ions and metabolites can occur. Two hemichannels, each built up of six connexin protein subunits in the plasma membrane of adjacent cells, can dock to each other to form conduits between cells. We have recently screened mouse and human genomic data bases and have found 19 connexin (Cx) genes in the mouse genome and 20 connexin genes in the human genome. One mouse connexin gene and two human connexin genes do not appear to have orthologs in the other genome. With three exceptions, the characterized connexin genes comprise two exons whereby the complete reading frame is located on the second exon. Targeted ablation of eleven mouse connexin genes revealed basic insights into the functional diversity of the connexin gene family. In addition, the phenotypes of human genetic disorders caused by mutated connexin genes further complement our understanding of connexin functions in the human organism. In this review we compare currently identified connexin genes in both the mouse and human genome and discuss the functions of gap junctions deduced from targeted mouse mutants and human genetic disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salmonella enterica subspecies I serovars are common bacterial pathogens causing diseases ranging from enterocolitis to systemic infections. Some serovars are adapted to specific hosts, whereas others have a broad host range. The molecular mechanisms defining the virulence characteristics and the host range of a given S. enterica serovar are unknown. Streptomycin pretreated mice provide a surrogate host model for studying molecular aspects of the intestinal inflammation (colitis) caused by serovar Typhimurium (S. Hapfelmeier and W. D. Hardt, Trends Microbiol. 13:497-503, 2005). Here, we studied whether this animal model is also useful for studying other S. enterica subspecies I serovars. All three tested strains of the broad-host-range serovar Enteritidis (125109, 5496/98, and 832/99) caused pronounced colitis and systemic infection in streptomycin pretreated mice. Different levels of virulence were observed among three tested strains of the host-adapted serovar Dublin (SARB13, SD2229, and SD3246). Several strains of host restricted serovars were also studied. Two serovar Pullorum strains (X3543 and 449/87) caused intermediate levels of colitis. No intestinal inflammation was observed upon infection with three different serovar Paratyphi A strains (SARB42, 2804/96, and 5314/98) and one serovar Gallinarum strain (X3796). A second serovar Gallinarum strain (287/91) was highly virulent and caused severe colitis. This strain awaits future analysis. In conclusion, the streptomycin pretreated mouse model can provide an additional tool to study virulence factors (i.e., those involved in enteropathogenesis) of various S. enterica subspecies I serovars. Five of these strains (125109, 2229, 287/91, 449/87, and SARB42) are subject of Salmonella genome sequencing projects. The streptomycin pretreated mouse model may be useful for testing hypotheses derived from this genomic data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE Blood-borne biomarkers reflecting atherosclerotic plaque burden have great potential to improve clinical management of atherosclerotic coronary artery disease and acute coronary syndrome (ACS). APPROACH AND RESULTS Using data integration from gene expression profiling of coronary thrombi versus peripheral blood mononuclear cells and proteomic analysis of atherosclerotic plaque-derived secretomes versus healthy tissue secretomes, we identified fatty acid-binding protein 4 (FABP4) as a biomarker candidate for coronary artery disease. Its diagnostic and prognostic performance was validated in 3 different clinical settings: (1) in a cross-sectional cohort of patients with stable coronary artery disease, ACS, and healthy individuals (n=820), (2) in a nested case-control cohort of patients with ACS with 30-day follow-up (n=200), and (3) in a population-based nested case-control cohort of asymptomatic individuals with 5-year follow-up (n=414). Circulating FABP4 was marginally higher in patients with ST-segment-elevation myocardial infarction (24.9 ng/mL) compared with controls (23.4 ng/mL; P=0.01). However, elevated FABP4 was associated with adverse secondary cerebrovascular or cardiovascular events during 30-day follow-up after index ACS, independent of age, sex, renal function, and body mass index (odds ratio, 1.7; 95% confidence interval, 1.1-2.5; P=0.02). Circulating FABP4 predicted adverse events with similar prognostic performance as the GRACE in-hospital risk score or N-terminal pro-brain natriuretic peptide. Finally, no significant difference between baseline FABP4 was found in asymptomatic individuals with or without coronary events during 5-year follow-up. CONCLUSIONS Circulating FABP4 may prove useful as a prognostic biomarker in risk stratification of patients with ACS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction between sibling species that share a zone of contact is a multifaceted relationship affected by climate change [ 1, 2 ]. Between sibling species, interactions may occur at whole-organism (direct or indirect competition) or genomic (hybridization and introgression) levels [ 3–5 ]. Tracking hybrid zone movements can provide insights about influences of environmental change on species interactions [ 1 ]. Here, we explore the extent and mechanism of movement of the contact zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis) at whole-organism and genomic levels. We find strong evidence that winter temperatures limit the northern extent of P. carolinensis by demonstrating a current-day association between the range limit of this species and minimum winter temperatures. We further show that this temperature limitation has been consistent over time because we are able to accurately hindcast the previous northern range limit under earlier climate conditions. Using genomic data, we confirm northward movement of this contact zone over the past decade and highlight temporally consistent differential—but limited—geographic introgression of alleles. Our results provide an informative example of the influence of climate change on a contact zone between sibling species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on bacterial genomic data, we developed a one-step multiplex PCR assay to identify Salmonella and simultaneously differentiate the two invasive avian-adapted S. enterica serovar Gallinarum biotypes Gallinarum and Pullorum, and the most frequent, specific, and asymptomatic colonizers of chickens, serovars Enteritidis, Heidelberg, and Kentucky.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alveolar echinococcosis, caused by the tapeworm Echinococcus multilocularis, is one of the most severe parasitic diseases in humans and represents one of the 17 neglected diseases prioritised by the World Health Organisation (WHO) in 2012. Considering the major medical and veterinary importance of this parasite, the phylogeny of the genus Echinococcus is of considerable importance; yet, despite numerous efforts with both mitochondrial and nuclear data, it has remained unresolved. The genus is clearly complex, and this is one of the reasons for the incomplete understanding of its taxonomy. Although taxonomic studies have recognised E. multilocularis as a separate entity from the Echinococcus granulosus complex and other members of the genus, it would be premature to draw firm conclusions about the taxonomy of the genus before the phylogeny of the whole genus is fully resolved. The recent sequencing of E. multilocularis and E. granulosus genomes opens new possibilities for performing in-depth phylogenetic analyses. In addition, whole genome data provide the possibility of inferring phylogenies based on a large number of functional genes, i.e. genes that trace the evolutionary history of adaptation in E. multilocularis and other members of the genus. Moreover, genomic data open new avenues for studying the molecular epidemiology of E. multilocularis: genotyping studies with larger panels of genetic markers allow the genetic diversity and spatial dynamics of parasites to be evaluated with greater precision. There is an urgent need for international coordination of genotyping of E. multilocularis isolates from animals and human patients. This could be fundamental for a better understanding of the transmission of alveolar echinococcosis and for designing efficient healthcare strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Recurrent airway obstruction (RAO) is a severe chronic respiratory disease affecting horses worldwide, though mostly in the Northern hemisphere. Environmental as well as genetic factors strongly influence the course and prognosis of the disease. Research has been focused on characterization of immunologic factors contributing to inflammatory responses, on genetic linkage analysis, and, more recently, on proteomic analysis of airway secretions from affected horses. The goal of this study was to investigate the interactions between eight candidate genes previously identified in a genetic linkage study and proteins expressed in bronchoalveolar lavage fluid (BALF) collected from healthy and RAO-affected horses. The analysis was carried out with Ingenuity Pathway Analysis(R) bioinformatics software. RESULTS: The gene with the greatest number of indirect interactions with the set of proteins identified is Interleukin 4 Receptor (IL-4R), whose protein has also been detected in BALF. Interleukin 21 receptor and chemokine (C-C motif) ligand 24 also showed a large number of interactions with the group of detected proteins. Protein products of other genes like that of SOCS5, revealed direct interactions with the IL-4R protein. The interacting proteins NOD2, RPS6KA5 and FOXP3 found in several pathways are reported regulators of the NFkappaB pathway. CONCLUSIONS: The pathways generated with IL-4R highlight possible important intracellular signaling cascades implicating, for instance, NFkappaB. Furthermore, the proposed interaction between SOCS5 and IL-4R could explain how different genes can lead to identical clinical RAO phenotypes, as observed in two Swiss Warmblood half sibling families because these proteins interact upstream of an important cascade where they may act as a functional unit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract. Ancient Lake Ohrid is a steep-sided, oligotrophic, karst lake that was tectonically formed most likely within the Pliocene and often referred to as a hotspot of endemic biodiversity. This study aims on tracing significant lake level fluctuations at Lake Ohrid using high-resolution acoustic data in combination with lithological, geochemical, and chronological information from two sediment cores recovered from sub-aquatic terrace levels at ca. 32 and 60m water depth. According to our data, significant lake level fluctuations with prominent lowstands of ca. 60 and 35m below the present water level occurred during Marine Isotope Stage (MIS) 6 and MIS 5, respectively. The effect of these lowstands on biodiversity in most coastal parts of the lake is negligible, due to only small changes in lake surface area, coastline, and habitat. In contrast, biodiversity in shallower areas was more severely affected due to disconnection of today sublacustrine springs from the main water body. Multichannel seismic data from deeper parts of the lake clearly image several clinoform structures stacked on top of each other. These stacked clinoforms indicate significantly lower lake levels prior to MIS 6 and a stepwise rise of water level with intermittent stillstands since its existence as water-filled body, which might have caused enhanced expansion of endemic species within Lake Ohrid.