53 resultados para Genetic-evidence

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4 protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

UNLABELLED We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3' end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a large sample of African bats and characterizing several bat viruses on a full-genome level. Our evolutionary analyses show that animal and human viruses are genetically closely related, can exchange genetic material, and form a single viral species. We show that the putative host switches leading to the formation of HCoV-229E were accompanied by major genomic changes, including deletions in the viral spike glycoprotein gene and loss of an open reading frame. We reanalyze a previously described genetically related alpaca virus and discuss the role of camelids as potential intermediate hosts between bat and human viruses. The evolutionary history of HCoV-229E likely shares important characteristics with that of the recently emerged highly pathogenic Middle East respiratory syndrome (MERS) coronavirus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reorientation of the two vertically oriented palatal shelves into a horizontal position above the tongue, and second, fusion of the two shelves at the midline. Genetic evidence in humans and mice indicates the involvement of matrix metalloproteinases (MMPs). As MMP expression patterns might differ from sites of activity, we used a recently developed highly sensitive in situ zymography technique to map gelatinolytic MMP activity in the developing mouse palate. At embryonic day 14.5 (E14.5), we detected strong gelatinolytic activity around the lateral epithelial folds of the nasopharyngeal cavity, which is generated as a consequence of palatal shelf elevation. Activity was concentrated in the basement membrane of the epithelial fold but extended into the adjacent mesenchyme, and increased in intensity with lateral outgrowth of the cavity at E15.5. Gelatinolytic activity at this site was not the consequence of epithelial fold formation, as it was also observed in Bmp7-deficient embryos where shelf elevation is delayed. In this case, gelatinolytic activity appeared in vertical shelves at the exact position where the epithelial fold will form during elevation. Mmp2 and Mmp14 (MT1-MMP), but not Mmp9 and Mmp13, mRNAs were expressed in the mesenchyme around the epithelial folds of the elevated palatal shelves; this was confirmed by immunostaining for MMP-2 and MT1-MMP. Weak gelatinolytic activity was also found at the midline of E14.5 palatal shelves, which increased during fusion at E15.5. Whereas MMPs have been implicated in palatal fusion before, this is the first report showing that gelatinases might contribute to tissue remodeling during early stages of palatal shelf elevation and formation of the nasopharynx.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic evidence indicates that the major gelatinases MMP-2 and MMP-9 are involved in mammalian craniofacial development. Since these matrix metalloproteinases are secreted as proenzymes that require activation, their tissue distribution does not necessarily reflect the sites of enzymatic activity. Information regarding the spatial and temporal expression of gelatinolytic activity in the head of the mammalian embryo is sparse. Sensitive in situ zymography with dye-quenched gelatin (DQ-gelatin) has been introduced recently; gelatinolytic activity results in a local increase in fluorescence. Using frontal sections of wild-type mouse embryo heads from embryonic day 14.5-15.5, we optimized and validated a simple double-labeling in situ technique for combining DQ-gelatin zymography with immunofluorescence staining. MMP inhibitors were tested to confirm the specificity of the reaction in situ, and results were compared to standard SDS-gel zymography of tissue extracts. Double-labeling was used to show the spatial relationship in situ between gelatinolytic activity and immunostaining for gelatinases MMP-2 and MMP-9, collagenase 3 (MMP-13) and MT1-MMP (MMP-14), a major activator of pro-gelatinases. Strong gelatinolytic activity, which partially overlapped with MMP proteins, was confirmed for Meckel's cartilage and developing mandibular bone. In addition, we combined in situ zymography with immunostaining for extracellular matrix proteins that are potential gelatinase substrates. Interestingly, gelatinolytic activity colocalized precisely with laminin-positive basement membranes at specific sites around growing epithelia in the developing mouse head, such as the ducts of salivary glands or the epithelial fold between tongue and lower jaw region. Thus, this sensitive method allows to associate, with high spatial resolution, gelatinolytic activity with epithelial morphogenesis in the embryo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems1,2. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene3–9, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin’s effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lake Tanganyika, Africa’s oldest lake, harbours an impressive diversity of cichlid fishes. Although diversification in its radiating groups is thought to have been initially rapid, cichlids from Lake Tanganyika show little evidence for ongoing speciation. In contrast, examples of recent divergence among sympatric colour morphs are well known in haplochromine cichlids from Lakes Malawi and Victoria. Here, we report genetic evidence for recent divergence between two sympatric Tanganyikan cichlid colour morphs. These Petrochromis morphs share mitochondrial haplotypes, yet microsatellite loci reveal that their sympatric populations form distinct genetic groups. Nuclear divergence between the two morphs is equivalent to that which arises geographically within one of the morphs over short distances and is substantially smaller than that among other sympatric species in this genus. These patterns suggest that these morphs diverged only recently, yet that barriers to gene flow exist which prevent extensive admixture despite their sympatric distribution. The morphs studied here provide an unusual example of active diversification in Lake Tanganyika’s generally ancient cichlid fauna and enable comparisons of speciation processes between Lake Tanganyika and other African lakes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, majorregulatory genes and the signals that modulate these defense metabolites are vastly understudied, especiallyin important agro-economic monocot species. Here we show that products and signals derived from a singleZea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbiv-ory. We provide genetic evidence that two 13-LOXs, ZmLOX10 and ZmLOX8, specialize in providing substratefor the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the spe-cialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indi-cating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression ofJA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10-derived signaling isrequired for LOX8-mediated JA. The possible role of GLVs in JA signaling is supported by their ability to par-tially restore wound-induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produceGLVs and JA led to dramatic reductions in herbivore-induced plant volatiles (HIPVs) and attractiveness toparasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic linkto the diurnal regulation of GLVs and HIPVs. GLV-, JA- and HIPV-deficient lox10 mutants display compro-mised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence thatLOX10-dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene toagro-ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hatchery fish stocking for stock enhancement has been operated at a massive and global scale. However, the use of hatchery fish as a means of stock enhancement is highly controversial, and little is known about its effects on wild stock and consequences for stock enhancement. Here we review the scientific literature on this subject in order to address a fundamental - question is hatchery stocking a help or harm for wild stock and stock enhancement? We summarized 266 peer-reviewed papers that were published in the last 50 years, which describe empirical case studies on ecology and genetics of hatchery stocks and their effects on stock enhancement. Specifically, we asked whether hatchery stock and wild stock differed in fitness and the level of genetic variation, and whether stocking affected population abundance. Seventy studies contained comparisons between hatchery and wild stocks, out of which 23 studies showed significantly negative effects of hatchery rearing on the fitness of stocked fish, and 28 studies showed reduced genetic variation in hatchery populations. None of these studies suggested a positive genetic effect on the fitness of hatchery-reared individuals after release. These results suggest that negative effects of hatchery rearing are not just a concern but undeniably present in many aquaculture species. In a few cases, however, no obvious effect of hatchery rearing was observed, and a positive contribution of hatchery stock to the abundance of fish populations was indicated. These examples suggest that there is a chance to improve hatchery practices and mitigate the negative effects on wild stocks, although scientific data supporting the positive effect on stock enhancement are largely missing at this moment. Technically, microsatellite-based parentage assignments have been proven as a useful tool for the evaluation of reproductive fitness in natural settings, which is a key for stock enhancement by hatchery-based stocking. We discuss implications of these results, as well as their limitations and future directions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sexual selection by female mating preference for male nuptial coloration has been suggested as a driving force in the rapid speciation of Lake Victoria cichlid fish. This process could have been facilitated or accelerated by genetic associations between female preference loci and male coloration loci. Preferences, as well as coloration, are heritable traits and are probably determined by more than one gene. However, little is known about potential genetic associations between these traits. In turbid water, we found a population that is variable in male nuptial coloration from blue to yellow to red. Males at the extreme ends of the phenotype distribution resemble a reproductively isolated species pair in clear water that has diverged into one species with blue-grey mates and one species with bright red males. Females of the turbid water population vary in mating preference coinciding with the male phenotype distribution. For the current study, these females were mated to blue males. We measured the coloration of the sires and male offspring. Parents-offspring regression showed that the sires did not affect male offspring coloration, which confirms earlier findings that the blue species breeds true. In contrast, male offspring coloration was determined by the identity of the dams, which suggests that there is heritable variation in male color genes between females. However, we found that mating preferences of the dams were not correlated with male offspring coloration. Thus, there is no evidence for strong genetic linkage between mating preference and the preferred trait in this population [Current Zoology 56 (1): 57-64 2010].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

P>Outcrossing Arabidopsis species that diverged from their inbreeding relative Arabidopsis thaliana 5 million yr ago and display a biogeographical pattern of interspecific sympatry vs intraspecific allopatry provides an ideal model for studying impacts of gene introgression and polyploidization on species diversification. Flow cytometry analyses detected ploidy polymorphisms of 2x and 4x in Arabidopsis lyrata ssp. kamchatica of Taiwan. Genomic divergence between species/subspecies was estimated based on 98 randomly chosen nuclear genes. Multilocus analyses revealed a mosaic genome in diploid A. l. kamchatica composed of Arabidopsis halleri-like and A. lyrata-like alleles. Coalescent analyses suggest that the segregation of ancestral polymorphisms alone cannot explain the high inconsistency between gene trees across loci, and that gene introgression via diploid A. l. kamchatica likely distorts the molecular phylogenies of Arabidopsis species. However, not all genes migrated across species freely. Gene ontology analyses suggested that some nonmigrating genes were constrained by natural selection. High levels of estimated ancestral polymorphisms between A. halleri and A. lyrata suggest that gene flow between these species has not completely ceased since their initial isolation. Polymorphism data of extant populations also imply recent gene flow between the species. Our study reveals that interspecific gene flow affects the genome evolution in Arabidopsis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Species with a wide geographical distribution are often composed of distinct subgroups which may be adapted to their local environment. European trout (Salmo trutta species complex) provide an example of such a complex consisting of several genetically and ecologically distinct forms. However, trout populations are strongly influenced by human activities, and it is unclear to what extent neutral and adaptive genetic differences have persisted. We sampled 30 Swiss trout populations from heterogeneous environments along replicated altitudinal gradients in three major European drainages. More than 850 individuals were genotyped at 18 microsatellite loci which included loci diagnostic for evolutionary lineages and candidate markers associated with temperature tolerance, reproductive timing and immune defence. We find that the phylogeographic structure of Swiss trout populations has not been completely erased by stocking. Distinct genetic clusters corresponding to the different drainages could be identified, although nonindigenous alleles were clearly present, especially in the two Mediterranean drainages. We also still detected neutral genetic differentiation within rivers which was often associated with the geographical distance between populations. Five loci showed evidence of divergent selection between populations with several drainage-specific patterns. Lineage-diagnostic markers, a marker linked to a quantitative trait locus for upper temperature tolerance in other salmonids and a marker linked to the major histocompatibility class I gene were implicated in local adaptation and some patterns were associated with altitude. In contrast, tentative evidence suggests a signal of balancing selection at a second immune relevant gene (TAP2). Our results confirm the persistence of both neutral and potentially adaptive genetic differences between trout populations in the face of massive human-mediated dispersal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detecting small amounts of genetic subdivision across geographic space remains a persistent challenge. Often a failure to detect genetic structure is mistaken for evidence of panmixia, when more powerful statistical tests may uncover evidence for subtle geographic differentiation. Such slight subdivision can be demographically and evolutionarily important as well as being critical for management decisions. We introduce here a method, called spatial analysis of shared alleles (SAShA), that detects geographically restricted alleles by comparing the spatial arrangement of allelic co-occurrences with the expectation under panmixia. The approach is allele-based and spatially explicit, eliminating the loss of statistical power that can occur with user-defined populations and statistical averaging within populations. Using simulated data sets generated under a stepping-stone model of gene flow, we show that this method outperforms spatial autocorrelation (SA) and UST under common real-world conditions: at relatively high migration rates when diversity is moderate or high, especially when sampling is poor. We then use this method to show clear differences in the genetic patterns of 2 nearshore Pacific mollusks, Tegula funebralis (5 Chlorostoma funebralis) and Katharina tunicata, whose overall patterns of within-species differentiation are similar according to traditional population genetics analyses. SAShA meaningfully complements UST/FST, SA, and other existing geographic genetic analyses and is especially appropriate for evaluating species with high gene flow and subtle genetic differentiation.