34 resultados para Genetic resistance
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Resistance in Neisseria gonorrhoeae to all available therapeutic antimicrobials has emerged and new efficacious drugs for treatment of gonorrhea are essential. The topoisomerase II inhibitor ETX0914 (also known as AZD0914) is a new spiropyrimidinetrione antimicrobial that has different mechanisms of action from all previous and current gonorrhea treatment options. In this study, the N. gonorrhoeae resistance determinants for ETX0914 were further described and the effects of ETX0914 on the growth of N. gonorrhoeae (ETX0914 wild type, single step selected resistant mutants, and efflux pump mutants) were examined in a novel in vitro time-kill curve analysis to estimate pharmacodynamic parameters of the new antimicrobial. For comparison, ciprofloxacin, azithromycin, ceftriaxone, and tetracycline were also examined (separately and in combination with ETX0914). ETX0914 was rapidly bactericidal for all wild type strains and had similar pharmacodynamic properties to ciprofloxacin. All selected resistant mutants contained mutations in amino acid codons D429 or K450 of GyrB and inactivation of the MtrCDE efflux pump fully restored the susceptibility to ETX0914. ETX0914 alone and in combination with azithromycin and ceftriaxone was highly effective against N. gonorrhoeae and synergistic interaction with ciprofloxacin, particularly for ETX0914-resistant mutants, was found. ETX0914, monotherapy or in combination with azithromycin (to cover additional sexually transmitted infections), should be considered for phase III clinical trials and future gonorrhea treatment.
Resumo:
Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P < 0.0001). Lineage 1 was associated with inhA promoter -15C/T mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P < 0.0001). In conclusion, M. tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.
Resumo:
A recent study showed increased resistance against strongylid nematodes in offspring of a stallion affected by recurrent airway obstruction (RAG) compared with unrelated pasture mates. Resistance against strongylid nematodes was associated with RAG affection. Hypothesis: Resistance against strongylid nematodes has a genetic basis. The genetic variants influencing strongylid resistance also influence RAG susceptibility. Faecal samples from the half-sibling offspring of two RAG-affected Warmblood stallions 98 offspring from the first family (family 1) and 79 from the second family (family 2) were analysed using a combined sedimentation-flotation method. The phenotype was defined as a binary trait - either positive or negative for egg shedding. The influence of non-genetic factors on egg shedding was analysed using SAS, the mode of inheritance was investigated using PAP and iBay, and the association between shedding of strongyle eggs and RAG was estimated by odds ratios. Previously established genotypes for 315 microsatellite markers were used for QTL analyses using GRID QTL. The inheritance of "strongylid egg shedding" is influenced by major genes on ECA15 and ECA20. Shedding of strongylid eggs is associated with RAG in family 1 but not in family 2. Conclusions: The status of "shedding of strongyle eggs" has a genetic background. The results were inconclusive as to whether "egg shedding" and RAG share common genetic components. Our results suggest that it may be possible to select for resistance against strongylid nematodes.
Resumo:
Nasal carriage of Staphylococcus aureus was evaluated in pigs at slaughterhouse. The nasal cavities of 304 pigs from 54 herds were screened. Eighty-nine percent of the farms harbored pigs that were colonized with S. aureus. Among them, no MRSA were found, indicating a low prevalence. However, pigs were found to harbor S. aureus, which displayed resistance to penicillin (blaZ) (62.5%), tetracycline [tet(M)] (33.3%), streptomycin (strpS194) (27%), clindamycin [erm(B)] (4.1%), erythromycin [erm(B)] (4.1%), kanamycin (4.1%), chloramphenicol (catpC194) (2%) and gentamicin [aac(6')-Ie-aph(2')-Ia] (2%). The S. aureus isolates mainly belong to Ridom spa type t034 (31.3%), t208 (14.6%) and t899 (12.5%). These pig-associated spa types have not yet been detected in hospitalized human patients in Switzerland. Surveillance programs are now necessary at both inland and import levels to rapidly detect and suppress the emergence of MRSA in pigs in Switzerland.
Resumo:
We present an optimized multilocus sequence typing (MLST) scheme with universal primer sets for amplifying and sequencing the seven target genes of Campylobacter jejuni and Campylobacter coli. Typing was expanded by sequence determination of the genes flaA and flaB using optimized primer sets. This approach is compatible with the MLST and flaA schemes used in the PubMLST database and results in an additional typing method using the flaB gene sequence. An identification module based on the 16S rRNA and rpoB genes was included, as well as the genetic determination of macrolide and quinolone resistances based on mutations in the 23S rRNA and gyrA genes. Experimental procedures were simplified by multiplex PCR of the 13 target genes. This comprehensive approach was evaluated with C. jejuni and C. coli isolates collected in Switzerland. MLST of 329 strains resulted in 72 sequence types (STs) among the 186 C. jejuni strains and 39 STs for the 143 C. coli isolates. Fourteen (19%) of the C. jejuni and 20 (51%) of the C. coli STs had not been found previously. In total, 35% of the C. coli strains collected in Switzerland contained mutations conferring antibiotic resistance only to quinolone, 15% contained mutations conferring resistance only to macrolides, and 6% contained mutations conferring resistance to both classes of antibiotics. In C. jejuni, these values were 31% and 0% for quinolone and macrolide resistance, respectively. The rpoB sequence allowed phylogenetic differentiation between C. coli and C. jejuni, which was not possible by 16S rRNA gene analysis. An online Integrated Database Network System (SmartGene, Zug, Switzerland)-based platform for MLST data analysis specific to Campylobacter was implemented. This Web-based platform allowed automated allele and ST designation, as well as epidemiological analysis of data, thus streamlining and facilitating the analysis workflow. Data networking facilitates the exchange of information between collaborating centers. The described approach simplifies and improves the genotyping of Campylobacter, allowing cost- and time-efficient routine monitoring.
Resumo:
A collection of 77 Staphylococcus intermedius isolates from dogs and cats in Switzerland was examined for resistance to erythromycin. Resistance profiles for 14 additional antibiotics were compared between erythromycin-resistant and susceptible isolates. A resistance prevalence of 27% for erythromycin was observed in the population under study. Complete correlation between resistance to erythromycin, and to spiramycin, streptomycin, and neomycin was observed. The erythromycin-resistant isolates all had a reduced susceptibility to clindamycin when compared to the erythromycin-susceptible isolates. Both constitutive and inducible resistance phenotypes were observed for clindamycin. Ribotyping showed that macrolide-aminoglycoside resistance was randomly distributed among unrelated strains. This suggests that this particular resistance profile is not related to a single bacterial clone but to the horizontal transfer of resistance gene clusters in S. intermedius populations. The erythromycin-resistant isolates were all carrying erm(B), but not erm(A), erm(C), or msr(A). The erm(B) gene was physically linked to Tn5405-like elements known as resistance determinants for streptomycin, streptothricin, neomycin and kanamycin. Analysis of the region flanking erm(B) showed the presence of two different groups of erm(B)-Tn5405-like elements in the S. intermedius population examined and of elements found in Gram-positive species other than staphylococci. This strongly suggests that erm(B) or the whole erm(B)-Tn5405-like elements in S. intermedius originate from other bacterial species, possibly from enterococci.
Resumo:
Coagulase-negative staphylococci (CNS; n=417) were isolated from bovine milk and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nineteen different species were identified, and Staphylococcus xylosus, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus sciuri were the most prevalent species. Resistance to oxacillin (47.0% of the isolates), fusidic acid (33.8%), tiamulin (31.9%), penicillin (23.3%), tetracycline (15.8%), streptomycin (9.6%), erythromycin (7.0%), sulfonamides (5%), trimethoprim (4.3%), clindamycin (3.4%), kanamycin (2.4%), and gentamicin (2.4%) was detected. Resistance to oxacillin was attributed to the mecA gene in 9.7% of the oxacillin-resistant isolates. The remaining oxacillin-resistant CNS did not contain the mecC gene or mecA1 promoter mutations. The mecA gene was detected in Staphylococcus fleurettii, Staphylococcus epidermidis, Staph. haemolyticus, and Staph. xylosus. Resistance to tetracycline was attributed to the presence of tet(K) and tet(L), penicillin resistance to blaZ, streptomycin resistance to str and ant(6)-Ia, and erythromycin resistance to erm(C), erm(B), and msr. Resistance to tiamulin and fusidic acid could not be attributed to an acquired resistance gene. In total, 15.1% of the CNS isolates were multidrug resistant (i.e., resistant to 2 or more antimicrobials). The remaining CNS isolates were susceptible to antimicrobials commonly used in mastitis treatment. Methicillin-resistant CNS isolates were diverse, as determined by mecA gene sequence analysis, staphylococcal cassette chromosome mec typing, and pulsed-field gel electrophoresis. Arginine catabolic mobile element types 1 and 3 were detected in both methicillin-resistant and methicillin-susceptible Staph. epidermidis and were associated with sequence types ST59 and ST111. Because this study revealed the presence of multidrug-resistant CNS in a heterogeneous CNS population, we recommend antibiogram analysis of CNS in persistent infections before treatment with antimicrobials.
Resumo:
After a proper medical history, growth analysis and physical examination of a short child, followed by radiological and laboratory screening, the clinician may decide to perform genetic testing. We propose several clinical algorithms that can be used to establish the diagnosis. GH1 and GHRHR should be tested in children with severe isolated growth hormone deficiency and a positive family history. A multiple pituitary dysfunction can be caused by defects in several genes, of which PROP1 and POU1F1 are most common. GH resistance can be caused by genetic defects in GHR, STAT5B, IGF1, IGFALS, which all have their specific clinical and biochemical characteristics. IGF-I resistance is seen in heterozygous defects of the IGF1R. If besides short stature additional abnormalities are present, these should be matched with known dysmorphic syndromes. If no obvious candidate gene can be determined, a whole genome approach can be taken to check for deletions, duplications and/or uniparental disomies.
Resumo:
To obtain genetic information about Campylobacter jejuni and Campylobacter coli from broilers and carcasses at slaughterhouses, we analyzed and compared 340 isolates that were collected in 2008 from the cecum right after slaughter or from the neck skin after processing. We performed rpoB sequence-based identification, multilocus sequence typing (MLST), and flaB sequence-based typing; we additionally analyzed mutations within the 23S rRNA and gyrA genes that confer resistance to macrolide and quinolone antibiotics, respectively. The rpoB-based identification resulted in a distribution of 72.0% C. jejuni and 28.0% C. coli. The MLST analysis revealed that there were 59 known sequence types (STs) and 6 newly defined STs. Most of the STs were grouped into 4 clonal complexes (CC) that are typical for poultry (CC21, CC45, CC257, and CC828), and these represented 61.8% of all of the investigated isolates. The analysis of 95 isolates from the cecum and from the corresponding carcass neck skin covered 44 different STs, and 54.7% of the pairs had matching genotypes. The data indicate that cross-contamination from various sources during slaughter may occur, although the majority of Campylobacter contamination on carcasses appeared to originate from the slaughtered flock itself. Mutations in the 23S rRNA gene were found in 3.1% of C. coli isolates, although no mutations were found in C. jejuni isolates. Mutations in the gyrA gene were observed in 18.9% of C. jejuni and 26.8% of C. coli isolates, which included two C. coli strains that carried mutations conferring resistance to both classes of antibiotics. A relationship between specific genotypes and antibiotic resistance/susceptibility was observed.
Resumo:
Staphylococcus rostri is a newly described Staphylococcus species that is present in the nasal cavity of healthy pigs. Out of the 225 pigs tested at slaughterhouse, 46.7% carried the new species alone and 22% in combination with Staphylococcus aureus. An antibiotic resistance profile was determined for S. rostri and compared to that of S. aureus isolated from the same pig. Resistance to tetracycline specified by tet(M), tet(K) and tet(L), streptomycin (str(pS194)), penicillin (blaZ), trimethoprim (dfr(G)), and erythromycin and clindamycin (erm genes), were found in both species; however, with the exception of streptomycin and trimethoprim, resistance was higher in S. aureus. S. rostri isolates display very low genetic diversity as demonstrated by pulsed-field gel electrophoresis, which generated two major clusters. Several clonal complexes (CC1, CC5, CC9, CC30 and CC398) were identified in S. aureus with CC 9 and CC 398 being the most frequent. Our study gives the first overview of the distribution, genetic relatedness, and resistance profile of one coagulase-negative Staphylococcus species that is commonly present in the nares of healthy pigs in Switzerland, and shows that S. rostri may harbor resistance genes associated with transferable elements like Tn916.
Resumo:
Endocrine resistance in breast cancer remains a major clinical problem and is caused by crosstalk mechanisms of growth factor receptor cascades, such as the erbB and PI3K/AKT pathways. The possibilities a single breast cancer cell has to achieve resistance are manifold. We developed a model of 4-hydroxy-tamoxifen (OHT)‑resistant human breast cancer cell lines and compared their different expression patterns, activation of growth factor receptor pathways and compared cells by genomic hybridization (CGH). We also tested a panel of selective inhibitors of the erbB and AKT/mTOR pathways to overcome OHT resistance. OHT‑resistant MCF-7-TR and T47D-TR cells showed increased expression of HER2 and activation of AKT. T47D-TR cells showed EGFR expression and activated MAPK (ERK-1/2), whereas in resistant MCF-7-TR cells activated AKT was due to loss of CTMP expression. CGH analyses revealed remarkable aberrations in resistant sublines, which were predominantly depletions. Gefitinib inhibited erbB signalling and restored OHT sensitivity in T47D-TR cells. The AKT inhibitor perifosine restored OHT sensitivity in MCF-7-TR cells. All cell lines showed expression of receptors for gonadotropin-releasing hormone (GnRH) I and II, and analogs of GnRH-I/II restored OHT sensitivity in both resistant cell lines by inhibition of erbB and AKT signalling. In conclusion, mechanisms to escape endocrine treatment in breast cancer share similarities in expression profiling but are based on substantially different genetic aberrations. Evaluation of activated mediators of growth factor receptor cascades is helpful to predict response to specific inhibitors. Expression of GnRH-I/II receptors provides multi-targeting treatment strategies.
Resumo:
Allelic variants of the human P-glycoprotein encoding gene MDR1 (ABCB1) are discussed to be associated with different clinical conditions including pharmacoresistance of epilepsy. However, conflicting data have been reported with regard to the functional relevance of MDR1 allelic variants for the response to antiepileptic drugs. To our knowledge, it is not known whether functionally relevant genetic polymorphisms also occur in the two genes (Mdr1a/Abcb1a, Mdr1b/Abcb1b) coding for P-glycoprotein in the brain of rodents. Therefore, we have started to search for polymorphisms in the Mdr1a gene, which governs the expression of P-glycoprotein in brain capillary endothelial cells in rats. In the kindling model of temporal lobe epilepsy, subgroups of phenytoin-sensitive and phenytoin-resistant rats were selected in repeated drug trials. Sequencing of the Mdr1a gene coding sequence in the subgroups revealed no general differences between drug-resistant and drug-sensitive rats of the Wistar outbred strain. A comparison between different inbred and outbred rat strains also gave no evidence for polymorphisms in the Mdr1a coding sequence. However, in exon-flanking intron sequences, four genetic variants were identified by comparison between these rats strains. In conclusion, the finding that Wistar rats vary in their response to phenytoin, while having the same genetic background, argues against a major impact of Mdr1a genetics on pharmacosensitivity to antiepileptic drugs in the amygdala kindling model.
Resumo:
A survey of starter and probiotic cultures was carried out to determine the current antibiotic resistance situation in microbial food additives in Switzerland. Two hundred isolates from 90 different sources were typed by molecular and other methods to belong to the genera Lactobacillus (74 samples), Staphylococcus (33 samples), Bifidobacterium (6 samples), Pediococcus (5 samples), or were categorized as lactococci or streptococci (82 samples). They were screened for phenotypic resistances to 20 antibiotics by the disk diffusion method. Twenty-seven isolates exhibiting resistances that are not an intrinsic feature of the respective genera were further analyzed by microarray hybridization as a tool to trace back phenotypic resistances to specific genetic determinants. Their presence was finally verified by PCR amplification or Southern hybridization. These studies resulted in the detection of the tetracycline resistance gene tet(K) in 5 Staphylococcus isolates used as meat starter cultures, the tetracycline resistance gene tet(W) in the probiotic cultures Bifidobacterium lactis DSM 10140 and Lactobacillus reuteri SD 2112 (residing on a plasmid), and the lincosamide resistance gene lnu(A) (formerly linA) in L. reuteri SD 2112.
Resumo:
The genetic diversity of 115 Campylobacter coli strains, isolated from pigs of 59 geographical distant farms in Switzerland, were characterized on the basis of their DNA fingerprints and resistance to macrolides and fluoroquinolones. Sequence analysis showed that the macrolide-resistant isolates had a point mutation in the 23S ribosomal RNA (rRNA) genes (A2075G) and that the fluoroquinolone-resistant isolates had a point mutation in the gyrase gene gyrA (C257T). One fluoroquinolone-resistant strain had an additional transition mutation in the gyrB gene (A1471C). The flaA restriction fragment length polymorphism (RFLP) genotyping revealed that 57% of the isolates were genetically different. Point mutations in the 23S rRNA and gyrA genes could be found in both genetically distant and genetically related isolates. Additionally, isolates with and without point mutations were found within individual farms and on different farms. This study showed that the ciprofloxacin and erythromycin-resistant C. coli population present on the pig farms is not issued from a common ancestral clone, but individual Campylobacter strains have most likely mutated independently to acquire resistances under the selective pressure of an antibiotic.