18 resultados para Genetic contribution
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The identification of associations between interleukin-28B (IL-28B) variants and the spontaneous clearance of hepatitis C virus (HCV) raises the issues of causality and the net contribution of host genetics to the trait. To estimate more precisely the net effect of IL-28B genetic variation on HCV clearance, we optimized genotyping and compared the host contributions in multiple- and single-source cohorts to control for viral and demographic effects. The analysis included individuals with chronic or spontaneously cleared HCV infections from a multiple-source cohort (n = 389) and a single-source cohort (n = 71). We performed detailed genotyping in the coding region of IL-28B and searched for copy number variations to identify the genetic variant or haplotype carrying the strongest association with viral clearance. This analysis was used to compare the effects of IL-28B variation in the two cohorts. Haplotypes characterized by carriage of the major alleles at IL-28B single-nucleotide polymorphisms (SNPs) were highly overrepresented in individuals with spontaneous clearance versus those with chronic HCV infections (66.1% versus 38.6%, P = 6 × 10(-9) ). The odds ratios for clearance were 2.1 [95% confidence interval (CI) = 1.6-3.0] and 3.9 (95% CI = 1.5-10.2) in the multiple- and single-source cohorts, respectively. Protective haplotypes were in perfect linkage (r(2) = 1.0) with a nonsynonymous coding variant (rs8103142). Copy number variants were not detected. CONCLUSION: We identified IL-28B haplotypes highly predictive of spontaneous HCV clearance. The high linkage disequilibrium between IL-28B SNPs indicates that association studies need to be complemented by functional experiments to identify single causal variants. The point estimate for the genetic effect was higher in the single-source cohort, which was used to effectively control for viral diversity, sex, and coinfections and, therefore, offered a precise estimate of the net host genetic contribution.
Resumo:
The Franches-Montagnes is an indigenous Swiss horse breed, with approximately 2500 foalings per year. The stud book is closed, and no introgression from other horse breeds was conducted since 1998. Since 2006, breeding values for 43 different traits (conformation, performance and coat colour) are estimated with a best linear unbiased prediction (BLUP) multiple trait animal model. In this study, we evaluated the genetic diversity for the breeding population, considering the years from 2003 to 2008. Only horses with at least one progeny during that time span were included. Results were obtained based on pedigree information as well as from molecular markers. A series of software packages were screened to combine best the best linear unbiased prediction (BLUP) methodology with optimal genetic contribution theory. We looked for stallions with highest breeding values and lowest average relationship to the dam population. Breeding with such stallions is expected to lead to a selection gain, while lowering the future increase in inbreeding within the breed.
Resumo:
Franches-Montagnes is the only native horse breed in Switzerland, therefore special efforts should be made for ensuring its survival. The objectives of this study were to characterize the structure of this population as well as genetic variability with pedigree data, conformation traits and molecular markers. Studies were focused to clarify if this population is composed of a heavy- and a light-type subpopulation. Extended pedigree records of 3-year-old stallions (n = 68) and mares (n = 108) were available. Evaluations of body conformation traits as well as pedigree data and molecular markers did not support the two-subpopulation hypothesis. The generation interval ranged from 7.8 to 9.3 years. The complete generation equivalent was high (>12). The number of effective ancestors varied between 18.9 and 20.1, whereof 50% of the genetic variability was attributed to seven of them. Genetic contribution of Warmblood horses ranged from 36% to 42% and that of Coldblood horses from 4% to 6%. The average inbreeding coefficient reached 6%. Inbreeding effective population size was 114.5 when the average increase of the inbreeding coefficient per year since 1910 was taken. Our results suggest that bottleneck situations occurred because of selection of a small number of sire lines. Promotion of planned matings between parents that are less related is recommended in order to avoid a reduction of the genetic diversity.
Resumo:
Allostatic load (AL) is a marker of physiological dysregulation which reflects exposure to chronic stress. High AL has been related to poorer health outcomes including mortality. We examine here the association of socioeconomic and lifestyle factors with AL. Additionally, we investigate the extent to which AL is genetically determined. We included 803 participants (52% women, mean age 48±16years) from a population and family-based Swiss study. We computed an AL index aggregating 14 markers from cardiovascular, metabolic, lipidic, oxidative, hypothalamus-pituitary-adrenal and inflammatory homeostatic axes. Education and occupational position were used as indicators of socioeconomic status. Marital status, stress, alcohol intake, smoking, dietary patterns and physical activity were considered as lifestyle factors. Heritability of AL was estimated by maximum likelihood. Women with a low occupational position had higher AL (low vs. high OR=3.99, 95%CI [1.22;13.05]), while the opposite was observed for men (middle vs. high OR=0.48, 95%CI [0.23;0.99]). Education tended to be inversely associated with AL in both sexes(low vs. high OR=3.54, 95%CI [1.69;7.4]/OR=1.59, 95%CI [0.88;2.90] in women/men). Heavy drinking men as well as women abstaining from alcohol had higher AL than moderate drinkers. Physical activity was protective against AL while high salt intake was related to increased AL risk. The heritability of AL was estimated to be 29.5% ±7.9%. Our results suggest that generalized physiological dysregulation, as measured by AL, is determined by both environmental and genetic factors. The genetic contribution to AL remains modest when compared to the environmental component, which explains approximately 70% of the phenotypic variance.
Resumo:
Epilepsies have a highly heterogeneous background with a strong genetic contribution. The variety of unspecific and overlapping syndromic and nonsyndromic phenotypes often hampers a clear clinical diagnosis and prevents straightforward genetic testing. Knowing the genetic basis of a patient's epilepsy can be valuable not only for diagnosis but also for guiding treatment and estimating recurrence risks.
Resumo:
BACKGROUND: Renal hypodysplasia, characterized by a decrease in nephron number, small overall kidney size, and maldeveloped renal tissue, is a leading cause of chronic renal failure in young children. Familial clustering and renal hypodysplasia phenotypes observed in transgenic animal models suggest a genetic contribution. Uroplakin IIIa (encoded by UPIIIA) is an integral membrane protein present in urothelial plaques, and the murine UPIIIa knockout is associated with urothelial anomalies and vesicoureteral reflux. De novo UPIIIA mutations recently were identified in 4 of 17 patients with severe bilateral renal adysplasia. METHODS: To evaluate the overall role of UPIIIA in human renal hypodysplasia pathogenesis, we performed UPIIIA mutation analysis in a cohort of 170 pediatric patients affected by severe unilateral or bilateral renal hypodysplasia. Eighty-one patients were affected by bilateral nonobstructive renal hypodysplasia; of these, 61 were without vesicoureteral reflux. Eighty-four patients presented with unilateral nonobstructive renal hypodysplasia, including 24 patients with unilateral multicystic dysplastic kidneys. Family history was positive in 11%. RESULTS: Mutation analysis showed 2 heterozygous mutations not observed in 200 race-matched control chromosomes. In only 1 family was distribution of the UPIIIA mutation consistent with a disease-causing effect. This de novo missense mutation (Gly202Asp) was identified in a patient with unilateral multicystic dysplastic kidneys. The second (intronically located) mutation appeared unlikely to be disease causing because it did not segregate with an obvious disease phenotype in the affected family. CONCLUSION: Our results indicate that de novo mutations in UPIIIA can be involved in defective early kidney development, but probably constitute only a rare cause of human renal hypodysplasia in a minor subset of individuals.
Resumo:
Background Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. Methods In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. Results A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9×10−4). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05–2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06–1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16–1.96), diabetes (OR = 1.66; 95% CI, 1.10–2.49), ≥1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06–1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17–2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. Conclusions In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD.
Resumo:
BACKGROUND Vitamin D deficiency is prevalent in HIV-infected individuals and vitamin D supplementation is proposed according to standard care. This study aimed at characterizing the kinetics of 25(OH)D in a cohort of HIV-infected individuals of European ancestry to better define the influence of genetic and non-genetic factors on 25(OH)D levels. These data were used for the optimization of vitamin D supplementation in order to reach therapeutic targets. METHODS 1,397 25(OH)D plasma levels and relevant clinical information were collected in 664 participants during medical routine follow up visits. They were genotyped for 7 SNPs in 4 genes known to be associated with 25(OH)D levels. 25(OH)D concentrations were analyzed using a population pharmacokinetic approach. The percentage of individuals with 25(OH)D concentrations within the recommended range of 20-40ng/ml during 12 months of follow up and several dosage regimens were evaluated by simulation. RESULTS A one-compartment model with linear absorption and elimination was used to describe 25(OH)D pharmacokinetics, while integrating endogenous baseline plasma concentrations. Covariate analyses confirmed the effect of seasonality, body mass index, smoking habits, the analytical method, darunavir/r and the genetic variant in GC (rs2282679) on 25(OH)D concentrations. 11% of the interindividual variability in 25(OH)D levels was explained by seasonality and other non-genetic covariates and 1% by genetics. The optimal supplementation for severe vitamin D deficient patients was 300000 IU two times per year. CONCLUSIONS This analysis allowed identifying factors associated with 25(OH)D plasma levels in HIV-infected individuals. Improvement of dosage regimen and timing of vitamin D supplementation is proposed based on those results.
Resumo:
Background. The impact of human genetic background on low-trauma fracture (LTF) risk has not been evaluated in the context of human immunodeficiency virus (HIV) and clinical LTF risk factors. Methods. In the general population, 6 common single-nucleotide polymorphisms (SNPs) associate with LTF through genome-wide association study. Using genome-wide SNP arrays and imputation, we genotyped these SNPs in HIV-positive, white Swiss HIV Cohort Study participants. We included 103 individuals with a first, physician-validated LTF and 206 controls matched on gender, whose duration of observation and whose antiretroviral therapy start dates were similar using incidence density sampling. Analyses of nongenetic LTF risk factors were based on 158 cases and 788 controls. Results. A genetic risk score built from the 6 LTF-associated SNPs did not associate with LTF risk, in both models including and not including parental hip fracture history. The contribution of clinical LTF risk factors was limited in our dataset. Conclusions. Genetic LTF markers with a modest effect size in the general population do not improve fracture prediction in persons with HIV, in whom clinical LTF risk factors are prevalent in both cases and controls.
Resumo:
Hatchery fish stocking for stock enhancement has been operated at a massive and global scale. However, the use of hatchery fish as a means of stock enhancement is highly controversial, and little is known about its effects on wild stock and consequences for stock enhancement. Here we review the scientific literature on this subject in order to address a fundamental - question is hatchery stocking a help or harm for wild stock and stock enhancement? We summarized 266 peer-reviewed papers that were published in the last 50 years, which describe empirical case studies on ecology and genetics of hatchery stocks and their effects on stock enhancement. Specifically, we asked whether hatchery stock and wild stock differed in fitness and the level of genetic variation, and whether stocking affected population abundance. Seventy studies contained comparisons between hatchery and wild stocks, out of which 23 studies showed significantly negative effects of hatchery rearing on the fitness of stocked fish, and 28 studies showed reduced genetic variation in hatchery populations. None of these studies suggested a positive genetic effect on the fitness of hatchery-reared individuals after release. These results suggest that negative effects of hatchery rearing are not just a concern but undeniably present in many aquaculture species. In a few cases, however, no obvious effect of hatchery rearing was observed, and a positive contribution of hatchery stock to the abundance of fish populations was indicated. These examples suggest that there is a chance to improve hatchery practices and mitigate the negative effects on wild stocks, although scientific data supporting the positive effect on stock enhancement are largely missing at this moment. Technically, microsatellite-based parentage assignments have been proven as a useful tool for the evaluation of reproductive fitness in natural settings, which is a key for stock enhancement by hatchery-based stocking. We discuss implications of these results, as well as their limitations and future directions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
Resumo:
Alcoholic liver disease (ALD) accounts for the majority of chronic liver disease in Western countries. The spectrum of ALD includes steatosis with or without fibrosis in virtually all individuals with an alcohol consumption of >80 g/day, alcoholic steatohepatitis of variable severity in 10-35% and liver cirrhosis in approximately 15% of patients. Once cirrhosis is established, there is an annual risk for hepatocellular carcinoma of 1-2%. Environmental factors such as drinking patterns, coexisting liver disease, obesity, diet composition and comedication may modify the natural course of ALD. Twin studies have revealed a substantial contribution of genetic factors to the evolution of ALD, as demonstrated by a threefold higher disease concordance between monozygotic twins and dizygotic twins. With genotyping becoming widely available, a large number of genetic case-control studies evaluating candidate gene variants coding for proteins involved in the degradation of alcohol, mediating antioxidant defence, the evolution and counteraction of necroinflammation and formation and degradation of extracellular matrix have been published with largely unconfirmed, impeached or even disproved associations. Recently, whole genome analyses of large numbers of genetic variants in several chronic liver diseases including gallstone disease, primary sclerosing cholangitis and non-alcoholic fatty liver disease (NAFLD) have identified novel yet unconsidered candidate genes. Regarding the latter, a sequence variation within the gene coding for patatin-like phospholipase encoding 3 (PNPLA3, rs738409) was found to modulate steatosis, necroinflammation and fibrosis in NAFLD. Subsequently, the same variant was repeatedly confirmed as the first robust genetic risk factor for progressive ALD.
Resumo:
Chronic alcohol consumption is a major cause of liver cirrhosis which, however, develops in only a minority of heavy drinkers. Evidence from twin studies indicates that genetic factors account for at least 50% of individual susceptibility. The contribution of genetic factors to the development of diseases may be investigated either by means of animal experiments, through linkage studies in families of affected patients, or population based case-control studies. With regard to the latter, single nucleotide polymorphisms of genes involved in the degradation of alcohol, antioxidant defense, necroinflammation, and formation and degradation of extracellular matrix are attractive candidates for studying genotype-phenotype associations. However, many associations in early studies were found to be spurious and could not be confirmed in stringently designed investigations. Therefore, future genotype-phenotype studies in alcoholic liver disease should meet certain requirements in order to avoid pure chance observations due to a lack of power, false functional interpretation, and insufficient statistical evaluation.
Resumo:
We have investigated genetic parentage in a Swiss population of tawny owls (Strix aluco). To this end, we performed genetic analysis for six polymorphic loci of 49 avian microsatellite loci tested for cross-species amplification. We found one extra-pair young out of 137 (0.7%) nestlings in 37 families (2.7%). There was no intra-specific brood parasitism. Our results are in accordance with previous findings for other raptors and owls that genetic monogamy is the rule. Female tawny owls cannot raise offspring without a substantial contribution by their mates. Hence one favoured hypothesis is that high paternal investment in reproduction selects for behaviour that prevents cuckoldry.
Resumo:
BACKGROUND: HIV-1 infected individuals have an increased cardiovascular risk which is partially mediated by dyslipidemia. Single nucleotide polymorphisms in multiple genes involved in lipid transport and metabolism are presumed to modulate the risk of dyslipidemia in response to antiretroviral therapy. METHODS: The contribution to dyslipidemia of 20 selected single nucleotide polymorphisms of 13 genes reported in the literature to be associated with plasma lipid levels (ABCA1, ADRB2, APOA5, APOC3, APOE, CETP, LIPC, LIPG, LPL, MDR1, MTP, SCARB1, and TNF) was assessed by longitudinally modeling more than 4400 plasma lipid determinations in 438 antiretroviral therapy-treated participants during a median period of 4.8 years. An exploratory genetic score was tested that takes into account the cumulative contribution of multiple gene variants to plasma lipids. RESULTS: Variants of ABCA1, APOA5, APOC3, APOE, and CETP contributed to plasma triglyceride levels, particularly in the setting of ritonavir-containing antiretroviral therapy. Variants of APOA5 and CETP contributed to high-density lipoprotein-cholesterol levels. Variants of CETP and LIPG contributed to non-high-density lipoprotein-cholesterol levels, a finding not reported previously. Sustained hypertriglyceridemia and low high-density lipoprotein-cholesterol during the study period was significantly associated with the genetic score. CONCLUSIONS: Single nucleotide polymorphisms of ABCA1, APOA5, APOC3, APOE, and CETP contribute to plasma triglyceride and high-density lipoprotein-cholesterol levels during antiretroviral therapy exposure. Genetic profiling may contribute to the identification of patients at risk for antiretroviral therapy-related dyslipidemia.