22 resultados para Genetic Variance-covariance Matrix

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative genetics theory predicts adaptive evolution to be constrained along evolutionary lines of least resistance. In theory, hybridization and subsequent interspecific gene flow may however rapidly change the evolutionary constraints of a population and eventually change its evolutionary potential, but empirical evidence is still scarce. Using closely related species pairs of Lake Victoria cichlids sampled from four different islands with different levels of interspecific gene flow, we tested for potential effects of introgressive hybridization on phenotypic evolution in wild populations. We found that these effects differed among our study species. Constraints measured as the eccentricity of phenotypic variance-covariance matrices declined significantly with increasing gene flow in the less abundant species for matrices that have a diverged line of least resistance. In contrast we find no such decline for the more abundant species. Overall our results suggest that hybridization can change the underlying phenotypic variance-covariance matrix, potentially increasing the adaptive potential of such populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

devcon transforms the coefficients of 0/1 dummy variables so that they reflect deviations from the "grand mean" rather than deviations from the reference category (the transformed coefficients are equivalent to those obtained by the so called "effects coding") and adds the coefficient for the reference category. The variance-covariance matrix of the estimates is transformed accordingly. The transformed estimated can be used with post estimation procedures. In particular, devcon can be used to solve the identification problem for dummy variable effects in the so-called Blinder-Oaxaca decomposition (see the oaxaca package).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study describes brain areas involved in medial temporal lobe (mTL) seizures of 12 patients. All patients showed so-called oro-alimentary behavior within the first 20 s of clinical seizure manifestation characteristic of mTL seizures. Single photon emission computed tomography (SPECT) images of regional cerebral blood flow (rCBF) were acquired from the patients in ictal and interictal phases and from normal volunteers. Image analysis employed categorical comparisons with statistical parametric mapping and principal component analysis (PCA) to assess functional connectivity. PCA supplemented the findings of the categorical analysis by decomposing the covariance matrix containing images of patients and healthy subjects into distinct component images of independent variance, including areas not identified by the categorical analysis. Two principal components (PCs) discriminated the subject groups: patients with right or left mTL seizures and normal volunteers, indicating distinct neuronal networks implicated by the seizure. Both PCs were correlated with seizure duration, one positively and the other negatively, confirming their physiological significance. The independence of the two PCs yielded a clear clustering of subject groups. The local pattern within the temporal lobe describes critical relay nodes which are the counterpart of oro-alimentary behavior: (1) right mesial temporal zone and ipsilateral anterior insula in right mTL seizures, and (2) temporal poles on both sides that are densely interconnected by the anterior commissure. Regions remote from the temporal lobe may be related to seizure propagation and include positively and negatively loaded areas. These patterns, the covarying areas of the temporal pole and occipito-basal visual association cortices, for example, are related to known anatomic paths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Deterministic evolution, phylogenetic contingency and evolutionary chance each can influence patterns of morphological diversification during adaptive radiation. In comparative studies of replicate radiations, convergence in a common morphospace implicates determinism, whereas non-convergence suggests the importance of contingency or chance. Methodology/Principal Findings: The endemic cichlid fish assemblages of the three African great lakes have evolved similar sets of ecomorphs but show evidence of non-convergence when compared in a common morphospace, suggesting the importance of contingency and/or chance. We then analyzed the morphological diversity of each assemblage independently and compared their axes of diversification in the unconstrained global morphospace. We find that despite differences in phylogenetic composition, invasion history, and ecological setting, the three assemblages are diversifying along parallel axes through morphospace and have nearly identical variance-covariance structures among morphological elements. Conclusions/Significance: By demonstrating that replicate adaptive radiations are diverging along parallel axes, we have shown that non-convergence in the common morphospace is associated with convergence in the global morphospace. Applying these complimentary analyses to future comparative studies will improve our understanding of the relationship between morphological convergence and non-convergence, and the roles of contingency, chance and determinism in driving morphological diversification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coat color and pattern variations in domestic animals are frequently inherited as simple monogenic traits, but a number are known to have a complex genetic basis. While the analysis of complex trait data remains a challenge in all species, we can use the reduced haplotypic diversity in domestic animal populations to gain insight into the genomic interactions underlying complex phenotypes. White face and leg markings are examples of complex traits in horses where little is known of the underlying genetics. In this study, Franches-Montagnes (FM) horses were scored for the occurrence of white facial and leg markings using a standardized scoring system. A genome-wide association study (GWAS) was performed for several white patterning traits in 1,077 FM horses. Seven quantitative trait loci (QTL) affecting the white marking score with p-values p≤10(-4) were identified. Three loci, MC1R and the known white spotting genes, KIT and MITF, were identified as the major loci underlying the extent of white patterning in this breed. Together, the seven loci explain 54% of the genetic variance in total white marking score, while MITF and KIT alone account for 26%. Although MITF and KIT are the major loci controlling white patterning, their influence varies according to the basic coat color of the horse and the specific body location of the white patterning. Fine mapping across the MITF and KIT loci was used to characterize haplotypes present. Phylogenetic relationships among haplotypes were calculated to assess their selective and evolutionary influences on the extent of white patterning. This novel approach shows that KIT and MITF act in an additive manner and that accumulating mutations at these loci progressively increase the extent of white markings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles. We focus on the case where particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle shape and orientation, and we derive stereological estimators of the tensors. These estimators are combined to provide consistent estimators of the moments of the so-called particle cover density. The covariance structure associated with the particle cover density depends on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under rotations, then the covariance matrix is proportional to the identity matrix. We develop a non-parametric test for such isotropy. A flexible Lévy-based particle model is proposed, which may be analysed using a generalized method of moments in which the volume tensors enter. The developed methods are used to study the cell organization in the human brain cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcoholic liver disease (ALD) accounts for the majority of chronic liver disease in Western countries. The spectrum of ALD includes steatosis with or without fibrosis in virtually all individuals with an alcohol consumption of >80 g/day, alcoholic steatohepatitis of variable severity in 10-35% and liver cirrhosis in approximately 15% of patients. Once cirrhosis is established, there is an annual risk for hepatocellular carcinoma of 1-2%. Environmental factors such as drinking patterns, coexisting liver disease, obesity, diet composition and comedication may modify the natural course of ALD. Twin studies have revealed a substantial contribution of genetic factors to the evolution of ALD, as demonstrated by a threefold higher disease concordance between monozygotic twins and dizygotic twins. With genotyping becoming widely available, a large number of genetic case-control studies evaluating candidate gene variants coding for proteins involved in the degradation of alcohol, mediating antioxidant defence, the evolution and counteraction of necroinflammation and formation and degradation of extracellular matrix have been published with largely unconfirmed, impeached or even disproved associations. Recently, whole genome analyses of large numbers of genetic variants in several chronic liver diseases including gallstone disease, primary sclerosing cholangitis and non-alcoholic fatty liver disease (NAFLD) have identified novel yet unconsidered candidate genes. Regarding the latter, a sequence variation within the gene coding for patatin-like phospholipase encoding 3 (PNPLA3, rs738409) was found to modulate steatosis, necroinflammation and fibrosis in NAFLD. Subsequently, the same variant was repeatedly confirmed as the first robust genetic risk factor for progressive ALD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic alcohol consumption is a major cause of liver cirrhosis which, however, develops in only a minority of heavy drinkers. Evidence from twin studies indicates that genetic factors account for at least 50% of individual susceptibility. The contribution of genetic factors to the development of diseases may be investigated either by means of animal experiments, through linkage studies in families of affected patients, or population based case-control studies. With regard to the latter, single nucleotide polymorphisms of genes involved in the degradation of alcohol, antioxidant defense, necroinflammation, and formation and degradation of extracellular matrix are attractive candidates for studying genotype-phenotype associations. However, many associations in early studies were found to be spurious and could not be confirmed in stringently designed investigations. Therefore, future genotype-phenotype studies in alcoholic liver disease should meet certain requirements in order to avoid pure chance observations due to a lack of power, false functional interpretation, and insufficient statistical evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The purposes of this study were to use delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) to evaluate the zonal distribution of glycosaminoglycans (GAGs) in normal cartilage and repair tissue and to use 3-T MRI to monitor the GAG content in matrix-associated autologous chondrocyte transplants. SUBJECTS AND METHODS: Fifteen patients who underwent matrix-associated autologous chondrocyte transplantation in the knee joint underwent MRI at baseline and 3-T follow-up MRI 1 year later. Total and zonal changes in longitudinal relaxivity (deltaR1) and relative deltaR1 were calculated for repair tissue and normal hyaline cartilage and compared by use of analysis of variance. RESULTS: There was a significant difference between the mean deltaR1 of repair tissue and that of reference cartilage at baseline and follow-up (p < 0.001). There was a significant increase in deltaR1 value and a decrease in GAG content from the deep layer to the superficial layer in the reference cartilage and almost no variation and significantly higher values for the repair tissue at both examinations. At 1-year follow-up imaging, there was a 22.7% decrease in deltaR1 value in the deep zone of the transplant. CONCLUSION: T1 mapping with dGEMRIC at 3 T shows the zonal structure of normal hyaline cartilage, highly reduced zonal variations in repair tissue, and a tendency toward an increase in global and zonal GAG content 1 year after transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: As only a minority of alcoholics develop cirrhosis, polymorphic genes, whose products are involved in fibrosis development were suggested to confer individual susceptibility. We tested whether a functional promoter polymorphism in the gene encoding matrix metalloproteinase-3 (MMP-3; 1171 5A/6A) was associated liver cirrhosis in alcoholics. METHODS: Independent cohorts from the UK and Germany were studied. (i) UK cohort: 320 alcoholic cirrhotics and 183 heavy drinkers without liver damage and (ii) German cohort: 149 alcoholic cirrhotics, 220 alcoholic cirrhotics who underwent liver transplantation and 151 alcoholics without liver disease. Patients were genotyped for MMP-3 variants by restriction fragment length polymorphism, single strand confirmation polymorphism, and direct sequencing. In addition, MMP-3 transcript levels were correlated with MMP-3 genotype in normal liver tissues. RESULTS: Matrix metalloproteinase-3 genotype and allele distribution in all 1023 alcoholic patients were in Hardy-Weinberg equilibrium. No significant differences in MMP-3 genotype and allele frequencies were observed either between alcoholics with or without cirrhosis. There were no differences in hepatic mRNA transcription levels according to MMP-3 genotype. CONCLUSIONS: Matrix metalloproteinase-3 1171 promoter polymorphism plays no role in the genetic predisposition for liver cirrhosis in alcoholics. Stringently designed candidate gene association studies are required to exclude chance observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims The effect Of anthropogenic landscape fragmentation on the genetic diversity and adaptive potential of plant populations is a major issue in conservation biology. However, little is known about the partitioning of genetic diversity in alpine species, which occur in naturally fragmented habitats. Here, we, investigate molecular patterns of three alpine plants (Epilobium fleischeri, Geum reptans and Campanula thyrsoides) across Switzerland and ask whether Spatial isolation has led to high levels of populations differentiation, increasing over distance, and a decrease of within-population variability. We further hypothesize that file contrasting potential for long-distance dispersal (LDD) of Seed in these Species will considerably influence and explain diversity partitioning. Methods For each study species, we Sampled 20-23 individuals from each of 20-32 populations across entire Switzerland. We applied Random Amplified Polymorphic Dimorphism markers to assess genetic diversity within (Nei's expected heterozygosity, H-e; percentage of polymorphic hands, P-P) and among (analysis of molecular variance, Phi(st)) populations and correlated population size and altitude with within-populalion diversity. Spatial patterns of genetic relatedness were investigated using Mantel tests and standardized major axis regression as well as unweighted pair group method with arithmetic mean cluster analyses and Monmonier's algorithm. To avoid known biases, We standardized the numbers of populations, individuals and markers using multiple random reductions. We modelled LDD with a high alpine wind data set using the terminal velocity and height of seed release as key parameters. Additionally, we assessed a number of important life-history traits and factors that potentially influence genetic diversity partitioning (e.g. breeding system, longevity and population size). Important findings For all three species, We found a significant isolation-by-distance relationship but only a moderately high differentiation among populations (Phi(st): 22.7, 48 and 16.8%, for E. fleischeri, G. reptans and C. thyrsoides, respectively). Within-population diversity (H-c: 0.19-0.21, P-p: 62-75%) was not reduced in comparison to known results from lowland species and even small populations with < 50 reproductive individuals contained high levels of genetic diversity. We further found no indication that a high long-distance seed dispersal potential enhances genetic connectivity among populations. Gene flow seems to have a strong stochastic component causing large dissimilarity between population pairs irrespective of the spatial distance. Our results suggest that other life-history traits, especially the breeding System, may play an important role in genetic diversity partitioning. We conclude that spatial isolation in the alpine environment has a strong influence on population relatedness but that a number of factors can considerably influence the strength of this relationship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this article was to evaluate the potential of in vivo zonal T2-mapping as a noninvasive tool in the longitudinal visualization of cartilage repair tissue maturation after matrix-associated autologous chondrocyte transplantation (MACT). Fifteen patients were treated with MACT and evaluated cross-sectionally, with a baseline MRI at a follow-up of 19.7 +/- 12.1 months after cartilage transplantation surgery of the knee. In the same 15 patients, 12 months later (31.7 +/- 12.0 months after surgery), a longitudinal 1-year follow-up MRI was obtained. MRI was performed on a 3 Tesla MR scanner; morphological evaluation was performed using a double-echo steady-state sequence; T2 maps were calculated from a multiecho, spin-echo sequence. Quantitative mean (full-thickness) and zonal (deep and superficial) T2 values were calculated in the cartilage repair area and in control cartilage sites. A statistical analysis of variance was performed. Full-tickness T2 values showed no significant difference between sites of healthy cartilage and cartilage repair tissue (p < 0.05). Using zonal T2 evaluation, healthy cartilage showed a significant increase from the deep to superficial cartilage layers (p < 0.05). Cartilage repair tissue after MACT showed no significant zonal increase from deep to superficial cartilage areas during baseline MRI (p > 0.05); however, during the 1-year follow-up, a significant zonal stratification could be observed (p < 0.05). Morphological evaluation showed no significant difference between the baseline and the 1-year follow-up MRI. T2 mapping seems to be more sensitive in revealing changes in the repair tissue compared to morphological MRI. In vivo zonal T2 assessment may be sensitive enough to characterize the maturation of cartilage repair tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interspecific hybridization can generate transgressive hybrid phenotypes with extreme trait values exceeding the combined range of the parental species. Such variation can enlarge the working surface for natural selection, and may facilitate the evolution of novel adaptations where ecological opportunity exists. The number of quantitative trait loci fixed for different alleles in different species should increase with time since speciation. If transgression is caused by complementary gene action or epistasis, hybrids between more distant species should be more likely to display transgressive phenotypes. To test this prediction we collected data on transgression frequency from the literature, estimated genetic distances between the hybridizing species from gene sequences, and calculated the relationship between the two using phylogenetically controlled methods. We also tested if parental phenotypic divergence affected the occurrence of transgression. We found a highly significant positive correlation between transgression frequency and genetic distance in eudicot plants explaining 43% of the variance in transgression frequency. In total, 36% of the measured traits were transgressive. The predicted effect of time since speciation on transgressive segregation was unconfounded by the potentially conflicting effects of phenotypic differentiation between species. Our analysis demonstrates that the potential impact hybridization may have on phenotypic evolution is predictable from the genetic distance between species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a lot of effort has been spent in the efficient computation of kriging predictors when observations are assimilated sequentially. In particular, kriging update formulae enabling significant computational savings were derived. Taking advantage of the previous kriging mean and variance computations helps avoiding a costly matrix inversion when adding one observation to the TeX already available ones. In addition to traditional update formulae taking into account a single new observation, Emery (2009) proposed formulae for the batch-sequential case, i.e. when TeX new observations are simultaneously assimilated. However, the kriging variance and covariance formulae given in Emery (2009) for the batch-sequential case are not correct. In this paper, we fix this issue and establish correct expressions for updated kriging variances and covariances when assimilating observations in parallel. An application in sequential conditional simulation finally shows that coupling update and residual substitution approaches may enable significant speed-ups.