5 resultados para Genetic Techniques

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Contagious Bovine Pleuropneumonia (CBPP) is the most important chronic pulmonary disease of cattle on the African continent causing severe economic losses. The disease, caused by infection with Mycoplasma mycoides subsp. mycoides is transmitted by animal contact and develops slowly into a chronic form preventing an early clinical diagnosis. Because available vaccines confer a low protection rate and short-lived immunity, the rapid diagnosis of infected animals combined with traditional curbing measures is seen as the best way to control the disease. While traditional labour-intensive bacteriological methods for the detection of M. mycoides subsp. mycoides have been replaced by molecular genetic techniques in the last two decades, these latter approaches require well-equipped laboratories and specialized personnel for the diagnosis. This is a handicap in areas where CBPP is endemic and early diagnosis is essential. RESULTS We present a rapid, sensitive and specific diagnostic tool for M. mycoides subsp. mycoides detection based on isothermal loop-mediated amplification (LAMP) that is applicable to field conditions. The primer set developed is highly specific and sensitive enough to diagnose clinical cases without prior cultivation of the organism. The LAMP assay detects M. mycoides subsp. mycoides DNA directly from crude samples of pulmonary/pleural fluids and serum/plasma within an hour using a simple dilution protocol. A photometric detection of LAMP products allows the real-time visualisation of the amplification curve and the application of a melting curve/re-association analysis presents a means of quality assurance based on the predetermined strand-inherent temperature profile supporting the diagnosis. CONCLUSION The CBPP LAMP developed in a robust kit format can be run on a battery-driven mobile device to rapidly detect M. mycoides subsp. mycoides infections from clinical or post mortem samples. The stringent innate quality control allows a conclusive on-site diagnosis of CBPP such as during farm or slaughter house inspections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is constant pressure to improve evaluation of animal genetic resources in order to prevent their erosion. Maintaining the integrity of livestock species as well as their genetic diversity is of paramount interest for long-term agricultural policies. One major use of DNA techniques in conservation is to reveal genetic diversity within and between populations. Forty-one microsatellites were analysed to assess genetic diversity in nine Swiss sheep breeds and to measure the loss of the overall diversity when one breed would become extinct. The expected heterozygosities varied from 0.65 to 0.74 and 10.8% of the total genetic diversity can be explained by the variation among breeds. Based on the proportion of shared alleles, each of the nine breeds were clearly defined in their own cluster in the neighbour-joining tree describing the relationships among the breeds. Bayesian clustering methods assign individuals to groups based on their genetic similarity and infer the number of populations. In STRUCTURE, this approach pooled the Valais Blacknose and the Valais Red. With BAPS method the two Valais sheep breeds could be separated. Caballero & Toro approach (2002) was used to calculate the loss or gain of genetic diversity when each of the breeds would be removed from the set. The changes in diversity based on between-breed variation ranged from -12.2% (Valais Blacknose) to 0% (Swiss Black Brown Mountain and Mirror Sheep); based on within-breed diversity the removal of a breed could also produce an increase in diversity (-0.6% to + 0.6%). Allelic richness ranged from 4.9 (Valais Red) to 6.7 (Brown Headed Meat sheep and Red Engadine Sheep). Breed conservation decisions cannot be limited to genetic diversity alone. In Switzerland, conservation goals are embedded in the desire to carry the cultural legacy over to future generations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES This study sought to identify nonredundant atrial fibrillation (AF) genetic susceptibility signals and examine their cumulative relations with AF risk. BACKGROUND AF-associated loci span broad genomic regions that may contain multiple susceptibility signals. Whether multiple signals exist at AF loci has not been systematically explored. METHODS We performed association testing conditioned on the most significant, independently associated genetic markers at 9 established AF loci using 2 complementary techniques in 64,683 individuals of European ancestry (3,869 incident and 3,302 prevalent AF cases). Genetic risk scores were created and tested for association with AF in Europeans and an independent sample of 11,309 individuals of Japanese ancestry (7,916 prevalent AF cases). RESULTS We observed at least 4 distinct AF susceptibility signals on chromosome 4q25 upstream of PITX2, but not at the remaining 8 AF loci. A multilocus score comprised 12 genetic markers demonstrated an estimated 5-fold gradient in AF risk. We observed a similar spectrum of risk associated with these markers in Japanese. Regions containing AF signals on chromosome 4q25 displayed a greater degree of evolutionary conservation than the remainder of the locus, suggesting that they may tag regulatory elements. CONCLUSIONS The chromosome 4q25 AF locus is architecturally complex and harbors at least 4 AF susceptibility signals in individuals of European ancestry. Similar polygenic AF susceptibility exists between Europeans and Japanese. Future work is necessary to identify causal variants, determine mechanisms by which associated loci predispose to AF, and explore whether AF susceptibility signals classify individuals at risk for AF and related morbidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tef Eragrostis tef (Zucc.) Trotter is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n=4x=40), belongs to the Family Poaceae and, together with finger millet (Eleusine coracana Gaertn), to the Subfamily Chloridoideae. It was believed to have originated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding.