10 resultados para Genetic Influences
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Fesoterodine is a new antimuscarinic agent developed for the treatment of overactive bladder. Fesoterodine itself is inactive and is rapidly and extensively converted by ubiquitous esterases to its principal active moiety, 5-hydroxymethyl tolterodine (5-HMT). 5-HMT is formed via biotransformation of both fesoterodine and tolterodine, albeit by different metabolising enzymes, viz. esterases and CYP2D6 respectively. Tolterodine is a potent muscarinic receptor antagonist and has been used for the treatment of overactive bladder for over ten years. The objective of this study was to establish the pharmacokinetic profile of fesoterodine and to highlight ist potential pharmacokinetic advantages over tolterodine. DESIGN: Single-centre, open-label, randomised, 4-way crossover study in a total of 24 healthy male volunteers. Single oral doses of 4, 8, or 12 mg fesoterodine were administered after an overnight fast. In addition, the 8 mg dose was also administered after a standard high-fat and high-calorie breakfast. Blood and urine samples for the analysis of 5-HMT were collected before and multiple times after drug administration for pharmacokinetic analysis. RESULTS: The mean peak plasma concentration (Cmax) of 5-HMT and the mean area under the time versus concentration curve (AUC) increased proportionally with the fesoterodine dose. These two parameters were some 2-fold higher in CYP2D6 poor metabolisers, whereas the time to peak plasma concentration (tmax) and half life (t1/2) were not influenced by the dose or the CYP2D6 metaboliser status. If fesoterodine was taken following a high-fat breakfast, we observed small increases in Cmax and AUC. In spite of these modest genetic influences and food effects on the pharmacokinetics of fesoterodine, the overall interindividual variability in Cmax levels was relatively little compared to previously published reports using tolterodine. CONCLUSIONS: Due to the esterase-mediated cytochrome P450-independent formation of 5-HMT and involvement of multiple metabolic and renal excretion pathways in the elimination of 5-HMT, the effects of patient-intrinsic and -extrinsic factors on the pharmacokinetics of fesoterodine are only modest, with some 2-fold higher 5-HMT exposure. Therefore, in contrast to tolterodine, no reduction of fesoterodine dosage is required under conditions of reduced elimination. In most cases of drug interaction or renal/hepatic impairment, the fesoterodine dose may be increased to 8 mg/day based on individual patients' response, or patients may be required to remain at the initial recommended dose of 4 mg/day.
Resumo:
Cam-type deformity of the proximal femur is a risk factor for the development of cam-type femoroacetabular impingement and a prearthrotic condition of the hip. The etiology of cam-type deformity remains unclear. There are a number of causes of cam-type deformity including sequellae of slipped capital femoral epiphysis, Legg-Calvé-Perthes disease or Perthes-like deformities, postinfectious, and traumatic. However, the majority of cam-type deformities arise without any apparent preexisting hip disease. These "idiopathic" cam-type deformities likely represent a majority of cases, and show clear racial and sex differences, as well as developmental and genetic influences. Idiopathic cam-type deformity also seems to be a distinct entity from residual or silent slipped capital femoral epiphysis, as well as osteoarthritis-induced osteophytes. In this paper we examine the different pathogenetic aspects of the proximal femur that contribute to cam-type deformity and/or symptomatic cam-type femoroacetabular impingement.
Resumo:
Objectives: Etravirine (ETV) is metabolized by cytochrome P450 (CYP) 3A, 2C9, and 2C19. Metabolites are glucuronidated by uridine diphosphate glucuronosyltransferases (UGT). To identify the potential impact of genetic and non-genetic factors involved in ETV metabolism, we carried out a two-step pharmacogenetics-based population pharmacokinetic study in HIV-1 infected individuals. Materials and methods: The study population included 144 individuals contributing 289 ETV plasma concentrations and four individuals contributing 23 ETV plasma concentrations collected in a rich sampling design. Genetic variants [n=125 single-nucleotide polymorphisms (SNPs)] in 34 genes with a predicted role in ETV metabolism were selected. A first step population pharmacokinetic model included non-genetic and known genetic factors (seven SNPs in CYP2C, one SNP in CYP3A5) as covariates. Post-hoc individual ETV clearance (CL) was used in a second (discovery) step, in which the effect of the remaining 98 SNPs in CYP3A, P450 cytochrome oxidoreductase (POR), nuclear receptor genes, and UGTs was investigated. Results: A one-compartment model with zero-order absorption best characterized ETV pharmacokinetics. The average ETV CL was 41 (l/h) (CV 51.1%), the volume of distribution was 1325 l, and the mean absorption time was 1.2 h. The administration of darunavir/ritonavir or tenofovir was the only non-genetic covariate influencing ETV CL significantly, resulting in a 40% [95% confidence interval (CI): 13–69%] and a 42% (95% CI: 17–68%) increase in ETV CL, respectively. Carriers of rs4244285 (CYP2C19*2) had 23% (8–38%) lower ETV CL. Co-administered antiretroviral agents and genetic factors explained 16% of the variance in ETV concentrations. None of the SNPs in the discovery step influenced ETV CL. Conclusion: ETV concentrations are highly variable, and co-administered antiretroviral agents and genetic factors explained only a modest part of the interindividual variability in ETV elimination. Opposing effects of interacting drugs effectively abrogate genetic influences on ETV CL, and vice-versa.
Resumo:
INTRODUCTION Community acquired pneumonia (CAP) is the most common infectious reason for admission to the Intensive Care Unit (ICU). The GenOSept study was designed to determine genetic influences on sepsis outcome. Phenotypic data was recorded using a robust clinical database allowing a contemporary analysis of the clinical characteristics, microbiology, outcomes and independent risk factors in patients with severe CAP admitted to ICUs across Europe. METHODS Kaplan-Meier analysis was used to determine mortality rates. A Cox Proportional Hazards (PH) model was used to identify variables independently associated with 28-day and six-month mortality. RESULTS Data from 1166 patients admitted to 102 centres across 17 countries was extracted. Median age was 64 years, 62% were male. Mortality rate at 28 days was 17%, rising to 27% at six months. Streptococcus pneumoniae was the commonest organism isolated (28% of cases) with no organism identified in 36%. Independent risk factors associated with an increased risk of death at six months included APACHE II score (hazard ratio, HR, 1.03; confidence interval, CI, 1.01-1.05), bilateral pulmonary infiltrates (HR1.44; CI 1.11-1.87) and ventilator support (HR 3.04; CI 1.64-5.62). Haematocrit, pH and urine volume on day one were all associated with a worse outcome. CONCLUSIONS The mortality rate in patients with severe CAP admitted to European ICUs was 27% at six months. Streptococcus pneumoniae was the commonest organism isolated. In many cases the infecting organism was not identified. Ventilator support, the presence of diffuse pulmonary infiltrates, lower haematocrit, urine volume and pH on admission were independent predictors of a worse outcome.
Resumo:
OBJECTIVE: The aetiology of Crohn's disease (CD) has been related to nucleotide-binding oligomerisation domain containing 2 (NOD2) and ATG16L1 gene variants. The observation of bacterial DNA translocation in patients with CD led us to hypothesise that this process may be facilitated in patients with NOD2/ATG16L1-variant genotypes, affecting the efficacy of anti-tumour necrosis factor (TNF) therapies. DESIGN: 179 patients with Crohn's disease were included. CD-related NOD2 and ATG16L1 variants were genotyped. Phagocytic and bactericidal activities were evaluated in blood neutrophils. Bacterial DNA, TNFα, IFNγ, IL-12p40, free serum infliximab/adalimumab levels and antidrug antibodies were measured. RESULTS: Bacterial DNA was found in 44% of patients with active disease versus 23% of patients with remitting disease (p=0.01). A NOD2-variant or ATG16L1-variant genotype was associated with bacterial DNA presence (OR 4.8; 95% CI 1.1 to 13.2; p=0.001; and OR 2.4; 95% CI 1.4 to 4.7; p=0.01, respectively). This OR was 12.6 (95% CI 4.2 to 37.8; p=0.001) for patients with a double-variant genotype. Bacterial DNA was associated with disease activity (OR 2.6; 95% CI 1.3 to 5.4; p=0.005). Single and double-gene variants were not associated with disease activity (p=0.19). Patients with a NOD2-variant genotype showed decreased phagocytic and bactericidal activities in blood neutrophils, increased TNFα levels in response to bacterial DNA and decreased trough levels of free anti-TNFα. The proportion of patients on an intensified biological therapy was significantly higher in the NOD2-variant groups. CONCLUSIONS: Our results characterise a subgroup of patients with CD who may require a more aggressive therapy to reduce the extent of inflammation and the risk of relapse
Resumo:
Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P < 0.0001). Lineage 1 was associated with inhA promoter -15C/T mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P < 0.0001). In conclusion, M. tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.
Resumo:
Environmental changes affecting the relationship between the developing immune system and microbial exposure have been implicated in the epidemic rise of allergic disease in developed countries. While early developmental differences in T cell function are well-recognised, there is now emerging evidence that this is related to developmental differences in innate immune function. In this study we sought to examine if differences associated with innate immunity contribute to the altered immune programming recognised in allergic children. Here, we describe for the first time, the association of carriage of the T allele of the tagging single nucleotide polymorphism rs12979860 3 kb upstream of IL28B, encoding the potent innate immune modulator type III interferon lambda (IFN-λ3), and allergy in children (p = 0.004; OR 4.56). Strikingly, the association between rs12979860 genotype and allergic disease is enhanced in girls. Furthermore, carriage of the T allele at rs12979860 correlates with differences in the pro-inflammatory profile during the first five years of life suggesting this contributes to the key differences in subsequent innate immune development in children who develop allergic disease. In the context of rising rates of disease, these immunologic differences already present at birth imply very early interaction between genetic predisposition and prenatal environmental influences.
Resumo:
In this report, we describe a short peptide, containing a T helper- and a B-cell epitope, located in the Gag protein of the caprine arthritis encephalitis virus (CAEV). This T-cell epitope is capable of inducing a robust T-cell proliferative response in vaccinated goats with different genetic backgrounds and to provide help for a strong antibody response to the B-cell epitope, indicating that it may function as a universal antigen-carrier for goat vaccines. The primary immune response of goats homozygous for MHC class I and II genes showed an MHC-dependent partitioning in rapid-high and slow-low responses, whereas the memory immune response was strong in both groups, demonstrating that a vaccine based on this immunodominant T helper epitope is capable to overcome genetic differences.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition, strongly associated with the metabolic syndrome, that can lead to progressive hepatic fibrosis, cirrhosis and hepatic failure. Subtle inter-patient genetic variation and environmental factors combine to determine variation in disease progression. A common non-synonymous polymorphism in TM6SF2 (rs58542926 c.449 C>T, p.Glu167Lys) was recently associated with increased hepatic triglyceride content, but whether this variant promotes clinically relevant hepatic fibrosis is unknown. Here we confirm that TM6SF2 minor allele carriage is associated with NAFLD and is causally related to a previously reported chromosome 19 GWAS signal that was ascribed to the gene NCAN. Furthermore, using two histologically characterized cohorts encompassing steatosis, steatohepatitis, fibrosis and cirrhosis (combined n=1,074), we demonstrate a new association, independent of potential confounding factors (age, BMI, type 2 diabetes mellitus and PNPLA3 rs738409 genotype), with advanced hepatic fibrosis/cirrhosis. These findings establish new and important clinical relevance to TM6SF2 in NAFLD.
Resumo:
While many myxozoan parasites produce asymptomatic infections in fish hosts, several species cause diseases whose patterns of prevalence and pathogenicity are highly dependent on host and environmental factors. This chapter reviews how these factors influence pathogenicity and disease prevalence. Influential host factors include age, size and nutritional state. There is also strong evidence for host strains that vary in resistance to infection and that there is a genetic basis for resistance. A lack of co-evolutionary processes appears to generally underly the devastating impacts of diseases caused by myxozoans when introduced fish are exposed to novel parasites (e.g. PKD in rainbow trout in Europe) or when native fish are exposed to an introduced parasite (e.g. whirling disease in North America). Most available information on abiotic factors relates to water temperature, which has been shown to play a crucial role in several host parasite systems (e.g. whirling disease, PKD) and is therefore of concern in view of global warming, fish health and food sustainability. Eutrophication may also influence disease development. Abiotic factors may also drive fish disease via their impact on parasite development in invertebrate hosts.