5 resultados para Genetic Dissection
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Aortic dilatation/dissection (AD) can occur spontaneously or in association with genetic syndromes, such as Marfan syndrome (MFS; caused by FBN1 mutations), MFS type 2 and Loeys-Dietz syndrome (associated with TGFBR1/TGFBR2 mutations), and Ehlers-Danlos syndrome (EDS) vascular type (caused by COL3A1 mutations). Although mutations in FBN1 and TGFBR1/TGFBR2 account for the majority of AD cases referred to us for molecular genetic testing, we have obtained negative results for these genes in a large cohort of AD patients, suggesting the involvement of additional genes or acquired factors. In this study we assessed the effect of COL3A1 deletions/duplications in this cohort. Multiplex ligation-dependent probe amplification (MLPA) analysis of 100 unrelated patients identified one hemizygous deletion of the entire COL3A1 gene. Subsequent microarray analyses and sequencing of breakpoints revealed the deletion size of 3,408,306 bp at 2q32.1q32.3. This deletion affects not only COL3A1 but also 21 other known genes (GULP1, DIRC1, COL5A2, WDR75, SLC40A1, ASNSD1, ANKAR, OSGEPL1, ORMDL1, LOC100129592, PMS1, MSTN, C2orf88, HIBCH, INPP1, MFSD6, TMEM194B, NAB1, GLS, STAT1, and STAT4), mutations in three of which (COL5A2, SLC40A1, and MSTN) have also been associated with an autosomal dominant disorder (EDS classical type, hemochromatosis type 4, and muscle hypertrophy). Physical and laboratory examinations revealed that true haploinsufficiency of COL3A1, COL5A2, and MSTN, but not that of SLC40A1, leads to a clinical phenotype. Our data not only emphasize the impact/role of COL3A1 in AD patients but also extend the molecular etiology of several disorders by providing hitherto unreported evidence for true haploinsufficiency of the underlying gene.
Resumo:
Aortic aneurysms and aortic dissection represent a significant health risk due to the demographic developments and current life styles. The mortality of ruptured aortic aneurysms is up to 80 % and the prevalence of aneurysms varies depending on the localization (thoracic or abdominal). Most commonly affected is the infrarenal abdominal aorta; however, there is evidence that the prevalence is diminishing but in contrast the incidence of thoracic aortic aneurysms is increasing. Aortic dissection is often fatal and is the most common acute aortic disease but the incidence is presumed to be underestimated. The pathogenesis of aortic aneurysms is manifold and is based on an interplay between degenerative, proteolytic and inflammatory processes. An aortic dissection arises from a tear in the intima which results in a separation of the aortic wall layers with infiltration of bleeding and the danger of aortic rupture. Various genetic disorders of connective tissue promote degeneration of the aortic media, most notably Marfan syndrome. Risk factors for aortic aneurysms and aortic dissection are nicotine abuse, arterial hypertension, age and male gender. Aortic aneurysms initially have an uneventful course and as a consequence are mostly discovered incidentally. The clinical course and symptoms of aortic dissection are very much dependent on the section of the aorta affected and the manifestations are manifold. Acute aortic dissection is in 80 % of cases first manifested as sudden extremely severe pain. The diagnostics and subsequent course control can be achieved by a variety of imaging procedures but the modality of choice is computed tomography.
Resumo:
Animal-mediated pollination is essential in the reproductive biology of many flowering plants and tends to be associated with pollination syndromes, sets of floral traits that are adapted to particular groups of pollinators. The complexity and functional convergence of various traits within pollination syndromes are outstanding examples of biological adaptation, raising questions about their mechanisms and origins. In the genus Petunia, complex pollination syndromes are found for nocturnal hawkmoths (P. axillaris) and diurnal bees (P. integrifolia), with characteristic differences in petal color, corolla shape, reproductive organ morphology, nectar quantity, nectar quality, and fragrance. We dissected the Petunia syndromes into their most important phenotypic and genetic components. They appear to include several distinct differences, such as cell-growth and cell-division patterns in the basal third of the petals, elongation of the ventral stamens, nectar secretion and nectar sugar metabolism, and enzymatic differentiation in the phenylpropanoid pathway. In backcross-inbred lines of species-derived chromosome segments in a transposon tagging strain of P. hybrida, one to five quantitative trait loci were identified for each syndrome component. Two loci for stamen elongation and nectar volume were confirmed in introgression lines and showed large allelic differences. The combined data provide a framework for a detailed understanding of floral syndromes from their developmental and molecular basis to their impact on animal behavior. With its molecular genetic tools, this Petunia system provides a novel venue for a pattern of adaptive radiation that is among the most characteristic of flowering plants.