6 resultados para Genes, Lethal

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. It was previously shown that the prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis are greatest in winter. The aim of this study was to investigate how M. catarrhalis uses the physiologic exposure to cold air to upregulate pivotal survival systems in the pharynx that may contribute to M. catarrhalis virulence. Results A 26°C cold shock induces the expression of genes involved in transferrin and lactoferrin acquisition, and enhances binding of these proteins on the surface of M. catarrhalis. Exposure of M. catarrhalis to 26°C upregulates the expression of UspA2, a major outer membrane protein involved in serum resistance, leading to improved binding of vitronectin which neutralizes the lethal effect of human complement. In contrast, cold shock decreases the expression of Hemagglutinin, a major adhesin, which mediates B cell response, and reduces immunoglobulin D-binding on the surface of M. catarrhalis. Conclusion Cold shock of M. catarrhalis induces the expression of genes involved in iron acquisition, serum resistance and immune evasion. Thus, cold shock at a physiologically relevant temperature of 26°C induces in M. catarrhalis a complex of adaptive mechanisms that enables the bacterium to target their host cellular receptors or soluble effectors and may contribute to enhanced growth, colonization and virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cause of porcine congenital progressive ataxia and spastic paresis (CPA) is unknown. This severe neuropathy manifests shortly after birth and is lethal. The disease is inherited as a single autosomal recessive allele, designated cpa. In a previous study, we demonstrated close linkage of cpa to microsatellite SW902 on porcine chromosome 3 (SSC3), which corresponds syntenically to human chromosome 2. This latter chromosome contains ion channel genes (Ca(2+), K(+) and Na(+)), a cholinergic receptor gene and the spastin (SPG4) gene, which cause human epilepsy and ataxia when mutated. We mapped porcine CACNB4, KCNJ3, SCN2A and CHRNA1 to SSC15 and SPG4 to SSC3 with the INRA-Minnesota porcine radiation hybrid panel (IMpRH) and we sequenced the entire open reading frames of CACNB4 and SPG4 without finding any differences between healthy and affected piglets. An anti-epileptic drug treatment with ethosuximide did not change the severity of the disease, and pigs with CPA did not exhibit the corticospinal tract axonal degeneration found in humans suffering from hereditary spastic paraplegia, which is associated with mutations in SPG4. For all these reasons, the hypothesis that CACNB4, CHRNA1, KCNJ3, SCN2A or SPG4 are identical with the CPA gene was rejected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT: Thyroid transcription factor 1 (TITF1/NKX2.1) is expressed in the thyroid, lung, ventral forebrain, and pituitary. In the lung, TITF1/NKX2.1 activates the expression of genes critical for lung development and function. Titf/Nkx2.1(-/-) mice have pituitary and thyroid aplasia but also impairment of pulmonary branching. Humans with heterozygous TITF1/NKX2.1 mutations present with various combinations of primary hypothyroidism, respiratory distress, and neurological disorders. OBJECTIVE: The objective of the study was to report clinical and molecular studies of the first patient with lethal neonatal respiratory distress from a novel heterozygous TITF1/NKX2.1 mutation. Participant: This girl, the first child of healthy nonconsanguineous French-Canadian parents, was born at 41 wk. Birth weight was 3,460 g and Apgar scores were normal. Soon after birth, she developed acute respiratory failure with pulmonary hypertension. At neonatal screening on the second day of life, TSH was 31 mU/liter (N <15) and total T(4) 245 nmol/liter (N = 120-350). Despite mechanical ventilation, thyroxine, surfactant, and pulmonary vasodilators, the patient died on the 40th day. RESULTS: Histopathology revealed pulmonary tissue with low alveolar counts. The thyroid was normal. Sequencing of the patient's lymphocyte DNA revealed a novel heterozygous TITF1/NKX2.1 mutation (I207F). This mutation was not found in either parent. In vitro, the mutant TITF-1 had reduced DNA binding and transactivation capacity. CONCLUSION: This is the first reported case of a heterozygous TITF1/NKX2.1 mutation leading to neonatal death from respiratory failure. The association of severe unexplained respiratory distress in a term neonate with mild primary hypothyroidism is the clue that led to the diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES The aim of this study was to provide the spectrum and prevalence of mutations in the 12 Brugada syndrome (BrS)-susceptibility genes discovered to date in a single large cohort of unrelated BrS patients. BACKGROUND BrS is a potentially lethal heritable arrhythmia syndrome diagnosed electrocardiographically by coved-type ST-segment elevation in the right precordial leads (V1 to V3; type 1 Brugada electrocardiographic [ECG] pattern) and the presence of a personal/family history of cardiac events. METHODS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, comprehensive mutational analysis of BrS1- through BrS12-susceptibility genes was performed in 129 unrelated patients with possible/probable BrS (46 with clinically diagnosed BrS [ECG pattern plus personal/family history of a cardiac event] and 83 with a type 1 BrS ECG pattern only). RESULTS Overall, 27 patients (21%) had a putative pathogenic mutation, absent in 1,400 Caucasian reference alleles, including 21 patients with an SCN5A mutation, 2 with a CACNB2B mutation, and 1 each with a KCNJ8 mutation, a KCND3 mutation, an SCN1Bb mutation, and an HCN4 mutation. The overall mutation yield was 23% in the type 1 BrS ECG pattern-only patients versus 17% in the clinically diagnosed BrS patients and was significantly greater among young men<20 years of age with clinically diagnosed BrS and among patients who had a prolonged PQ interval. CONCLUSIONS We identified putative pathogenic mutations in ∼20% of our BrS cohort, with BrS genes 2 through 12 accounting for <5%. Importantly, the yield was similar between patients with only a type 1 BrS ECG pattern and those with clinically established BrS. The yield approaches 40% for SCN5A-mediated BrS (BrS1) when the PQ interval exceeds 200 ms. Calcium channel-mediated BrS is extremely unlikely in the absence of a short QT interval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms responsible for the determination of phenotypes are still not well understood; however, it has become apparent that modifier genes must play a considerable role in the phenotypic heterogeneity of Mendelian disorders. Significant advances in genetic technologies and molecular medicine allow huge amounts of information to be generated from individual samples within a reasonable time frame. This review focuses on the role of modifier genes using the example of cystic fibrosis, the most common lethal autosomal recessive disorder in the white population, and discusses the advantages and limitations of candidate gene approaches versus genome-wide association studies. Moreover, the implications of modifier gene research for other monogenic disorders, as well as its significance for diagnostic, prognostic, and therapeutic approaches are summarized. Increasing insight into modifying mechanisms opens up new perspectives, dispelling the idea of genetic disorders being caused by one single gene.