77 resultados para General - statistics and numerical data

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of the present study was to assess the oral mucosal health status of young male adults (aged 18 to 24 years) in Switzerland and to correlate their clinical findings with self-reported risk factors such as tobacco use and alcohol consumption. MATERIALS AND METHODS: Data on the oral health status of 615 Swiss Army recruits were collected using a standardised self-reported questionnaire, followed by an intraoral examination. Positive clinical findings were classified as (1) common conditions and anatomical variants, (2) reactive lesions, (3) benign tumour lesions and (4) premalignant lesions. The main locations of the oral mucosal findings were recorded on a topographical classification chart. Using correlational statistics, the findings were further associated with the known risk factors such as tobacco use and alcohol consumption. RESULTS: A total of 468 findings were diagnosed in 327 (53.17%) of the 615 subjects. In total, 445 findings (95.09%) were classified as common conditions, anatomical variants and reactive soft-tissue lesions. In the group of reactive soft-tissue lesions, there was a significantly higher percentage of smokers (P < 0.001) and subjects with a combination of smoking and alcohol consumption (P < 0.001). Eight lesions were clinically diagnosed as oral leukoplakias associated with smokeless tobacco. The prevalence of precursor lesions in the population examined was over 1%. CONCLUSIONS: Among young male adults in Switzerland, a significant number of oral mucosal lesions can be identified, which strongly correlate with tobacco use. To improve primary and secondary prevention, young adults should therefore be informed more extensively about the negative effects of tobacco use on oral health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: In Switzerland there is a shortage of population-based information on stroke incidence and case fatalities (CF). The aim of this study was to estimate stroke event rates and both in- and out-of-hospital CF rates. METHODS: Data on stroke diagnoses, coded according to I60-I64 (ICD 10), were taken from the Federal Hospital Discharge Statistics database (HOST) and the Cause of Death database (CoD) for the year 2004. The number of total stroke events and of age- and gender-specific and agestandardised event rates were estimated; overall CF, in-hospital and out-of-hospital, were determined. RESULTS: Among the overall number of 13 996 hospital discharges from stroke (HOST) the number was lower in women (n = 6736) than in men (n = 7260). A total of 3568 deaths (2137 women and 1431 men) due to stroke were recorded in the CoD database. The number of estimated stroke events was 15 733, and higher in women (n = 7933) than in men (n = 7800). Men presented significantly higher age-specific stroke event rates and a higher age-standardised event rate (178.7/100 000 versus 119.7/100 000). Overall CF rates were significantly higher for women (26.9%) than for men (18.4%). The same was true of out-of-hospital CF but not of in-hospital CF rates. CONCLUSION: The data on estimated stroke events obtained indicate that stroke discharge rate underestimates the stroke event rate. Out-of-hospital deaths from stroke accounted for the largest proportion of total stroke deaths. Sex differences in both number of total stroke events and deaths could be explained by the higher proportion of women than men aged 55+ in the Swiss population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ diffusion experiments are performed in geological formations at underground research laboratories to overcome the limitations of laboratory diffusion experiments and investigate scale effects. Tracer concentrations are monitored at the injection interval during the experiment (dilution data) and measured from host rock samples around the injection interval at the end of the experiment (overcoring data). Diffusion and sorption parameters are derived from the inverse numerical modeling of the measured tracer data. The identifiability and the uncertainties of tritium and Na-22(+) diffusion and sorption parameters are studied here by synthetic experiments having the same characteristics as the in situ diffusion and retention (DR) experiment performed on Opalinus Clay. Contrary to previous identifiability analyses of in situ diffusion experiments, which used either dilution or overcoring data at approximate locations, our analysis of the parameter identifiability relies simultaneously on dilution and overcoring data, accounts for the actual position of the overcoring samples in the claystone, uses realistic values of the standard deviation of the measurement errors, relies on model identification criteria to select the most appropriate hypothesis about the existence of a borehole disturbed zone and addresses the effect of errors in the location of the sampling profiles. The simultaneous use of dilution and overcoring data provides accurate parameter estimates in the presence of measurement errors, allows the identification of the right hypothesis about the borehole disturbed zone and diminishes other model uncertainties such as those caused by errors in the volume of the circulation system and the effective diffusion coefficient of the filter. The proper interpretation of the experiment requires the right hypothesis about the borehole disturbed zone. A wrong assumption leads to large estimation errors. The use of model identification criteria helps in the selection of the best model. Small errors in the depth of the overcoring samples lead to large parameter estimation errors. Therefore, attention should be paid to minimize the errors in positioning the depth of the samples. The results of the identifiability analysis do not depend on the particular realization of random numbers. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Natural soil profiles may be interpreted as an arrangement of parts which are characterized by properties like hydraulic conductivity and water retention function. These parts form a complicated structure. Characterizing the soil structure is fundamental in subsurface hydrology because it has a crucial influence on flow and transport and defines the patterns of many ecological processes. We applied an image analysis method for recognition and classification of visual soil attributes in order to model flow and transport through a man-made soil profile. Modeled and measured saturation-dependent effective parameters were compared. We found that characterizing and describing conductivity patterns in soils with sharp conductivity contrasts is feasible. Differently, solving flow and transport on the basis of these conductivity maps is difficult and, in general, requires special care for representation of small-scale processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A vast amount of data shows that angiogenesis has a pivotal role in tumor growth, progression, invasiveness and metastasis. This is a complex process involving essential signaling pathways such as vascular endothelial growth factor (VEGF) and Notch in vasculature, as well as additional players such as bone marrow-derived endothelial progenitor cells. Primary tumor cells, stromal cells and cancer stem cells strongly influence vessel growth in tumors. Better understanding of the role of the different pathways and the crosstalk between different cells during tumor angiogenesis are crucial factors for developing more effective anticancer therapies. Targeting angiogenic factors from the VEGF family has become an effective strategy to inhibit tumor growth and so far the most successful results are seen in metastatic colorectal cancer (CRC), renal cell carcinoma (RCC) and non-small cell lung cancer (NSCLL). Despite the initial enthusiasm, the angiogenesis inhibitors showed only moderate survival benefit as monotherapy, along with a high cost and many side effects. Obviously, other important pathways may affect the angiogenic switch, among them Notch signaling pathway attracted a large interest because its ubiquitous role in carcinogenesis and angiogenesis. Herein we present the basics for VEGF and Notch signaling pathways and current advances of targeting them in antiangiogenic, antitumor therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questionable cystic fibrosis (CF), mild or monosymptomatic phenotypes frequently cause diagnostic difficulties despite detailed algorithms. CF transmembrane conductance regulator (CFTR)-mediated ion transport can be studied ex vivo in rectal biopsies by intestinal current measurement (ICM).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in the area of mobile and wireless communication for healthcare (m-Health) along with the improvements in information science allow the design and development of new patient-centric models for the provision of personalised healthcare services, increase of patient independence and improvement of patient's self-control and self-management capabilities. This paper comprises a brief overview of the m-Health applications towards the self-management of individuals with diabetes mellitus and the enhancement of their quality of life. Furthermore, the design and development of a mobile phone application for Type 1 Diabetes Mellitus (T1DM) self-management is presented. The technical evaluation of the application, which permits the management of blood glucose measurements, blood pressure measurements, insulin dosage, food/drink intake and physical activity, has shown that the use of the mobile phone technologies along with data analysis methods might improve the self-management of T1DM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention-deficit/hyperactivity disorder (ADHD) often persists into adulthood. Instruments for diagnosing ADHD in childhood are well validated and reliable, but diagnosis of ADHD in adults remains problematic. Attempts have been made to develop criteria specific for adult ADHD, resulting in the development of self-report and observer-rated questionnaires. To date, the Conners Adult ADHD Rating Scales (CAARS) are the international standard for questionnaire assessment of ADHD. The current study evaluates a German version of the CAARS self-report (CAARS-S).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlamydia trachomatis is the most common bacterial sexually transmitted infection (STI) in many developed countries. The highest prevalence rates are found among young adults who have frequent partner change rates. Three published individual-based models have incorporated a detailed description of age-specific sexual behaviour in order to quantify the transmission of C. trachomatis in the population and to assess the impact of screening interventions. Owing to varying assumptions about sexual partnership formation and dissolution and the great uncertainty about critical parameters, such models show conflicting results about the impact of preventive interventions. Here, we perform a detailed evaluation of these models by comparing the partnership formation and dissolution dynamics with data from Natsal 2000, a population-based probability sample survey of sexual attitudes and lifestyles in Britain. The data also allow us to describe the dispersion of C. trachomatis infections as a function of sexual behaviour, using the Gini coefficient. We suggest that the Gini coefficient is a useful measure for calibrating infectious disease models that include risk structure and highlight the need to estimate this measure for other STIs.