7 resultados para Gene duplications
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The development of a completely annotated sheep genome sequence is a key need for understanding the phylogenetic relationships and genetic diversity among the many different sheep breeds worldwide and for identifying genes controlling economically and physiologically important traits. The ovine genome sequence assembly will be crucial for developing optimized breeding programs based on highly productive, healthy sheep phenotypes that are adapted to modern breeding and production conditions. Scientists and breeders around the globe have been contributing to this goal by generating genomic and cDNA libraries, performing genome-wide and trait-associated analyses of polymorphism, expression analysis, genome sequencing, and by developing virtual and physical comparative maps. The International Sheep Genomics Consortium (ISGC), an informal network of sheep genomics researchers, is playing a major role in coordinating many of these activities. In addition to serving as an essential tool for monitoring chromosome abnormalities in specific sheep populations, ovine molecular cytogenetics provides physical anchors which link and order genome regions, such as sequence contigs, genes and polymorphic DNA markers to ovine chromosomes. Likewise, molecular cytogenetics can contribute to the process of defining evolutionary breakpoints between related species. The selective expansion of the sheep cytogenetic map, using loci to connect maps and identify chromosome bands, can substantially contribute to improving the quality of the annotated sheep genome sequence and will also accelerate its assembly. Furthermore, identifying major morphological chromosome anomalies and micro-rearrangements, such as gene duplications or deletions, that might occur between different sheep breeds and other Ovis species will also be important to understand the diversity of sheep chromosome structure and its implications for cross-breeding. To date, 566 loci have been assigned to specific chromosome regions in sheep and the new cytogenetic map is presented as part of this review. This review will also summarize the current cytogenomic status of the sheep genome, describe current activities in the sheep cytogenomics research sector, and will discuss the cytogenomics data in context with other major sheep genomics projects.
Resumo:
Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.
Resumo:
Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder. Genetic loci have not yet been identified by genome-wide association studies. Rare copy number variations (CNVs), such as chromosomal deletions or duplications, have been implicated in ADHD and other neurodevelopmental disorders. To identify rare (frequency 1%) CNVs that increase the risk of ADHD, we performed a whole-genome CNV analysis based on 489 young ADHD patients and 1285 adult population-based controls and identified one significantly associated CNV region. In tests for a global burden of large (>500 kb) rare CNVs, we observed a nonsignificant (P=0.271) 1.126-fold enriched rate of subjects carrying at least one such CNV in the group of ADHD cases. Locus-specific tests of association were used to assess if there were more rare CNVs in cases compared with controls. Detected CNVs, which were significantly enriched in the ADHD group, were validated by quantitative (q)PCR. Findings were replicated in an independent sample of 386 young patients with ADHD and 781 young population-based healthy controls. We identified rare CNVs within the parkinson protein 2 gene (PARK2) with a significantly higher prevalence in ADHD patients than in controls (P=2.8 × 10(-4) after empirical correction for genome-wide testing). In total, the PARK2 locus (chr 6: 162 659 756-162 767 019) harboured three deletions and nine duplications in the ADHD patients and two deletions and two duplications in the controls. By qPCR analysis, we validated 11 of the 12 CNVs in ADHD patients (P=1.2 × 10(-3) after empirical correction for genome-wide testing). In the replication sample, CNVs at the PARK2 locus were found in four additional ADHD patients and one additional control (P=4.3 × 10(-2)). Our results suggest that copy number variants at the PARK2 locus contribute to the genetic susceptibility of ADHD. Mutations and CNVs in PARK2 are known to be associated with Parkinson disease.Molecular Psychiatry advance online publication, 20 November 2012; doi:10.1038/mp.2012.161.
Resumo:
Sodium channel gene aberrations are associated with a wide range of seizure disorders, particularly Dravet syndrome. They usually consist of missense or truncating gene mutations or deletions. Duplications involving multiple genes encoding for different sodium channels are not widely known. This article summarizes the clinical, radiologic, and genetic features of patients with 2q24 duplication involving the sodium channel gene cluster.
Resumo:
BACKGROUND: Cystic fibrosis (CF) is associated with at least 1 pathogen point sequence variant on each CFTR allele. Some symptomatic patients, however, have only 1 detectable pathogen sequence variant and carry, on the other allele, a large deletion that is not detected by conventional screening methods. METHODS: For relative quantitative real-time PCR detection of large deletions in the CFTR gene, we designed DNA-specific primers for each exon of the gene and primers for a reference gene (beta2-microglobulin). For PCR we used a LightCycler system (Roche) and calculated the gene-dosage ratio of CFTR to beta2-microglobulin. We tested the method by screening all 27 exons in 3 healthy individuals and 2 patients with only 1 pathogen sequence variant. We then performed specific deletion screenings in 10 CF patients with known large deletions and a blinded analysis in which we screened 24 individuals for large deletions by testing 8 of 27 exons. RESULTS: None of the ratios for control samples were false positive (for deletions or duplications); moreover, for all samples from patients with known large deletions, the calculated ratios for deleted exons were close to 0.5. In addition, the results from the blinded analysis demonstrated that our method can also be used for the screening of single individuals. CONCLUSIONS: The LightCycler assay allows reliable and rapid screening for large deletions in the CFTR gene and detects the copy number of all 27 exons.
Resumo:
Gene duplication is one of the key factors driving genetic innovation, i.e., producing novel genetic variants. Although the contribution of whole-genome and segmental duplications to phenotypic diversity across species is widely appreciated, the phenotypic spectrum and potential pathogenicity of small-scale duplications in individual genomes are less well explored. This review discusses the nature of small-scale duplications and the phenotypes produced by such duplications. Phenotypic variation and disease phenotypes induced by duplications are more diverse and widespread than previously anticipated, and duplications are a major class of disease-related genomic variation. Pathogenic duplications particularly involve dosage-sensitive genes with both similar and dissimilar over- and underexpression phenotypes, and genes encoding proteins with a propensity to aggregate. Phenotypes related to human-specific copy number variation in genes regulating environmental responses and immunity are increasingly recognized. Small genomic duplications containing defense-related genes also contribute to complex common phenotypes.
Resumo:
Mutations in the FBN1 gene are the major cause of Marfan syndrome (MFS), an autosomal dominant connective tissue disorder, which displays variable manifestations in the cardiovascular, ocular, and skeletal systems. Current molecular genetic testing of FBN1 may miss mutations in the promoter region or in other noncoding sequences as well as partial or complete gene deletions and duplications. In this study, we tested for copy number variations by successively applying multiplex ligation-dependent probe amplification (MLPA) and the Affymetrix Human Mapping 500 K Array Set, which contains probes for approximately 500,000 single-nucleotide polymorphisms (SNPs) across the genome. By analyzing genomic DNA of 101 unrelated individuals with MFS or related phenotypes in whom standard genetic testing detected no mutation, we identified FBN1 deletions in two patients with MFS. Our high-resolution approach narrowed down the deletion breakpoints. Subsequent sequencing of the junctional fragments revealed the deletion sizes of 26,887 and 302,580 bp, respectively. Surprisingly, both deletions affect the putative regulatory and promoter region of the FBN1 gene, strongly indicating that they abolish transcription of the deleted allele. This expectation of complete loss of function of one allele, i.e. true haploinsufficiency, was confirmed by transcript analyses. Our findings not only emphasize the importance of screening for large genomic rearrangements in comprehensive genetic testing of FBN1 but, importantly, also extend the molecular etiology of MFS by providing hitherto unreported evidence that true haploinsufficiency is sufficient to cause MFS.