37 resultados para Gel electrolyte
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The i-gel™ is a single-use supraglottic airway device (SAD) that allows fibreoptic-guided tracheal intubation through the device. Until now, no prospective data for this procedure are available. Therefore, in a prospective randomized controlled trial, we evaluated fibreoptic-guided tracheal intubation with a standard Rüsch™ PVC tracheal tube (TT) through the i-gel™ compared with the single-use ILMA™ (sILMA™) TT through the sILMA™ in patients with a predicted difficult airway.
Resumo:
The single-use supraglottic airway device i-gel™ has been described in several case reports as a conduit for intubation, but no prospective data about success rates of blind intubation are available. Therefore, we performed this prospective randomized controlled trial to compare the success rate of blind tracheal intubation with a Magill PVC tube through the i-gel™ with intubation using an sILMA™ PVC tube through the single-use intubating laryngeal mask airway (sILMA™).
Resumo:
This prospective, randomized, controlled trial compares the performance of the pediatric i-gel (Intersurgical Ltd., Wokingham, United Kingdom) with the Ambu AuraOnce laryngeal mask (Ambu A/S, Ballerup, Denmark) in anesthetized and ventilated children.
Resumo:
As revealed for the first time by in situ scanning tunnelling spectroscopy (STS), ferrocene-modified Si(111) substrates show ambipolar field effect transistor (FET) behaviour upon electrolyte gating.
Resumo:
Hyper- and hyponatremia are frequently observed in patients after subarachnoidal hemorrhage, and are potentially related to worse outcome. We hypothesized that the fluid regimen in these patients is associated with distinct changes in serum electrolytes, acid-base disturbances, and fluid balance.
Resumo:
The i-gel™ supraglottic airway device has been studied in randomized controlled studies, but it has not been evaluated in a large prospective patient cohort. Therefore, we performed this prospective multicentre observational study to evaluate success rates, airway leak pressure, risk factors for i-gel failure, and adverse events.
Resumo:
Calculation of electrolyte-free water clearance (EFWC) allows for quantification of renal losses of free water and was shown to be helpful in the differential diagnosis of dysnatremias and might help in the correction of the electrolyte disorders. A modified EFWC formula (MEFWC) was described to be more accurate than the conventional one; however, it has never been evaluated clinically.
Resumo:
Diuretics are among the most commonly prescribed medications and, due to their mechanisms of action, electrolyte disorders are common side effects of their use. In the present work we investigated the associations between diuretics being taken and the prevalence of electrolyte disorders on admission as well as the impact of electrolyte disorders on patient outcome.
Resumo:
This paper presents a comparative proteomic analysis of human maternal plasma and amniotic fluid (AF) samples from the same patient at term of pregnancy in order to find specific AF proteins as markers of premature rupture of membranes, a complication frequently observed during pregnancy. Maternal plasma and the corresponding AF were immunodepleted in order to remove the six most abundant proteins before the systematic analysis of their protein composition. The protein samples were then fractionated by IEF Off-Gel electrophoresis (OGE), digested and analyzed with nano-LC-MS/MS separation, revealing a total of 73 and 69 proteins identified in maternal plasma and AF samples, respectively. The proteins identified in AF have been compared to those identified in the mother plasma as well as to the reference human plasma protein list reported by Anderson et al. (Mol. Cell. Proteomics 2004, 3, 311-326). This comparison showed that 26 proteins were exclusively present in AF and not in plasma among which 10 have already been described to be placenta or pregnancy specific. As a further validation of the method, plasma proteins fractionated by OGE and analysed by nano-LC-MS/MS have been compared to the Swiss 2-D PAGE reference map by reconstructing a map that matches 2-D gel and OGE experimental data. This representation shows that 36 of 49 reference proteins could be identified in both data sets, and that isoform shifts in pI are well conserved in the OGE data sets.
Resumo:
In order to improve the osseointegration of endosseous implants made from titanium, the structure and composition of the surface were modified. Mirror-polished commercially pure (cp) titanium substrates were coated by the sol-gel process with different oxides: TiO(2), SiO(2), Nb(2)O(5) and SiO(2)-TiO(2). The coatings were physically and biologically characterized. Infrared spectroscopy confirmed the absence of organic residues. Ellipsometry determined the thickness of layers to be approximately 100nm. High resolution scanning electron microscopy (SEM) and atomice force microscopy revealed a nanoporous structure in the TiO(2) and Nb(2)O(5) layers, whereas the SiO(2) and SiO(2)-TiO(2) layers appeared almost smooth. The R(a) values, as determined by white-light interferometry, ranged from 20 to 50nm. The surface energy determined by the sessile-drop contact angle method revealed the highest polar component for SiO(2) (30.7mJm(-2)) and the lowest for cp-Ti and 316L stainless steel (6.7mJm(-2)). Cytocompatibility of the oxide layers was investigated with MC3T3-E1 osteoblasts in vitro (proliferation, vitality, morphology and cytochemical/immunolabelling of actin and vinculin). Higher cell proliferation rates were found in SiO(2)-TiO(2) and TiO(2), and lower in Nb(2)O(5) and SiO(2); whereas the vitality rates increased for cp-Ti and Nb(2)O(5). Cytochemical assays showed that all substrates induced a normal cytoskeleton and well-developed focal adhesion contacts. SEM revealed good cell attachment for all coating layers. In conclusion, the sol-gel-derived oxide layers were thin, pure and nanostructured; consequent different osteoblast responses to those coatings are explained by the mutual action and coadjustment of different interrelated surface parameters.