40 resultados para Geiger-Müller counters.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Transport of radioactive iodide 131I− in a structured clay loam soil under maize in a final growing phase was monitored during five consecutive irrigation experiments under ponding. Each time, 27 mm of water were applied. The water of the second experiment was spiked with 200 MBq of 131I− tracer. Its activity was monitored as functions of depth and time with Geiger-Müller (G-M) detectors in 11 vertically installed access tubes. The aim of the study was to widen our current knowledge of water and solute transport in unsaturated soil under different agriculturally cultivated settings. It was supposed that the change in 131I− activity (or counting rate) is proportional to the change in soil water content. Rapid increase followed by a gradual decrease in 131I− activity occurred at all depths and was attributed to preferential flow. The iodide transport through structured soil profile was simulated by the HYDRUS 1D model. The model predicted relatively deep percolation of iodide within a short time, in a good agreement with the observed vertical iodide distribution in soil. We found that the top 30 cm of the soil profile is the most vulnerable layer in terms of water and solute movement, which is the same depth where the root structure of maize can extend.
Resumo:
OBJECTIVES: We sought to compare the diagnostic performance of screen-film radiography, storage-phosphor radiography, and a flat-panel detector system in detecting forearm fractures and to classify distal radius fractures according to the Müller-AO and Frykman classifications compared with the true extent, depicted by anatomic preparation. MATERIALS AND METHODS: A total of 71 cadaver arms were fractured in a material testing machine creating different fractures of the radius and ulna as well as of the carpal bones. Radiographs of the complete forearm were evaluated by 3 radiologists, and anatomic preparation was used as standard of reference in a receiver operating curve analysis. RESULTS: The highest diagnostic performance was obtained for the detection of distal radius fractures with area under the receiver operating curve (AUC) values of 0.959 for screen-film radiography, 0.966 for storage-phosphor radiography, and 0.971 for the flat-panel detector system (P > 0.05). Exact classification was slightly better for the Frykman (kappa values of 0.457-0.478) compared with the Müller-AO classification (kappa values of 0.404-0.447), but agreement can be considered as moderate for both classifications. CONCLUSIONS: The 3 imaging systems showed a comparable diagnostic performance in detecting forearm fractures. A high diagnostic performance was demonstrated for distal radius fractures and conventional radiography can be routinely performed for fracture detection. However, compared with anatomic preparation, depiction of the true extent of distal radius fractures was limited and the severity of distal radius fractures tends to be underestimated.