13 resultados para Gastric acid secretion
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Recent data suggest that acid suppressive medications may alter factors central to the pathophysiology of inflammatory bowel diseases (IBD), whether through shifts in the intestinal microbiome due to acid suppression or effects on immune function.
Resumo:
The mouse Foxq1 gene, also known as Hfh1, encodes a winged helix/forkhead transcription factor. In adult mice, Foxq1 is highly expressed in kidney and stomach. Here, we report that Foxq1 is expressed during prenatal and postnatal stomach development and the transcripts are restricted to acid secreting parietal cells. Mice homozygous for a deletion of the Foxq1 locus on a 129/Sv x C57BL/6J hybrid genetic background display variable phenotypes consistent with requirement of the gene during embryogenesis. Approximately 50% of Foxq1-/- embryos die in utero. Surviving homozygous mutants are normal and fertile, and have a silky shiny coat. Although the parietal cell development is not affected in the absence of Foxq1, there is a lack of gastric acid secretion in response to various secretagogue stimuli. Ultrastructural analysis suggests that the gastric acid secretion defect in Foxq1-deficient mice might be due to impairment in the fusion of cytoplasmic tubulovesicles to the apical membrane of secretory canaliculi.
Resumo:
In this chapter the basic aspects helping to understand the microbiome in terms of quantity, diversity, complexity, function, and interaction with the host are discussed. First the nomenclature, definitions of taxa, and measures of diversity as well as methods to unravel this kingdom are outlined. A brief summary on its physiological relevance for general health and the functions exerted specifically by the microbiome is presented. Differences in the composition of the microbiome along the gastrointestinal tract and across the gut wall and its interindividual variations, enterotypes, and stability are highlighted. The reader will be familiarized with all different modulators impacting on the microbiome, namely, intrinsic and extrinsic factors. Intrinsic factors include gastrointestinal secretions (gastric acid, bile, pancreatic juice, mucus), antimicrobial peptides, motility, enteric nervous system, and host genotype. Extrinsic factors are mainly dietary choices, hygiene, stress, alcohol consumption, exercise, and medications. The second part of the chapter focuses on quantitative and qualitative changes in microbiome in liver cirrhosis. The mechanisms contributing to dysbiosis, small intestinal bacterial overgrowth, and bacterial translocation are delineated underscoring their role for the liver-gut axis.
Resumo:
The rhizome of ginger (Zingiber officinale) is employed in Asian traditional medicine to treat mild forms of rheumatoid arthritis and fever. We have profiled ginger constituents for robust effects on proinflammatory signaling and cytokine expression in a validated assay using human whole blood. Independent of the stimulus used (LPS, PMA, anti-CD28 Ab, anti-CD3 Ab, and thapsigargin), ginger constituents potently and specifically inhibited IL-1β expression in monocytes/macrophages. Both the calcium-independent phospholipase A(2) (iPLA(2))-triggered maturation and the cytosolic phospholipase A(2) (cPLA(2))-dependent secretion of IL-1β from isolated human monocytes were inhibited. In a fluorescence-coupled PLA(2) assay, most major ginger phenylpropanoids directly inhibited i/cPLA(2) from U937 macrophages, but not hog pancreas secretory phospholipase A(2). The effects of the ginger constituents were additive and the potency comparable to the mechanism-based inhibitor bromoenol lactone for iPLA(2) and methyl arachidonyl fluorophosphonate for cPLA(2), with 10-gingerol/-shogaol being most effective. Furthermore, a ginger extract (2 μg/ml) and 10-shogaol (2 μM) potently inhibited the release of PGE(2) and thromboxane B2 (>50%) and partially also leukotriene B(4) in LPS-stimulated macrophages. Intriguingly, the total cellular arachidonic acid was increased 2- to 3-fold in U937 cells under all experimental conditions. Our data show that the concurrent inhibition of iPLA(2) and prostanoid production causes an accumulation of free intracellular arachidonic acid by disrupting the phospholipid deacylation-reacylation cycle. The inhibition of i/cPLA(2), the resulting attenuation of IL-1β secretion, and the simultaneous inhibition of prostanoid production by common ginger phenylpropanoids uncover a new anti-inflammatory molecular mechanism of dietary ginger that may be exploited therapeutically.
Resumo:
It has been suggested that the ratio of lactose to milk oligosaccharides in mammalian milk/colostrum is based on the ratio of expression of a-lactalbumin and glycosyltransferases in the mammary epithelial cells. It has also been suggested that the high secretion of milk in dairy breed cows has been acquired by a high expression of a-lactalbumin expression. As there is a large difference of milk secretion level between dairy and non dairy breed cows, there may be a difference in the ratio of lactose to milk oligosaccharides in milks between dairy and non dairy breed cows. In this study, the concentrations of hexose, sialic acid as well as sialyllactoses, which are representative bovine milk oligosaccharides, were determined in the milks of dairy and non dairy breed cows. The concentration of hexose was significantly higher in the milks of non dairy breed cows than that of dairy breed cows, but there were no significant differences with respect to sialic acid and sialyllactose. The significant difference of the ratio of the concentrations of 3'- and 6'-sialyllactose to total hexose in milk was not observed between dairy and non dairy cows.
Resumo:
Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle's loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A-non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl--dependent HCO3- secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1-/- mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1-/- mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO3- secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule.
Resumo:
HIT cells have been widely used to study synthesis and secretion of insulin. It has been assumed that this cell line secretes no other islet hormones. To ascertain whether HIT cells synthesize, secrete, and degrade glucagon, we examined cell extracts for this peptide and compared secretion and degradation of glucagon and insulin during stimulation of the cells by arginine. Glucagon levels in acid extracts of HIT cells were found to be 0.72 +/- 0.15 pmol/mg protein. Both glucagon and insulin were maximally stimulated in a glucagon/insulin molar ratio of 0.029 by arginine concentrations of 25-50 nM, and the concentration of arginine that provided half-maximum responses for both hormones was approximately 3 mM. Diminution of arginine-induced glucagon secretion was caused by somatostatin, a physiological inhibitor of pancreatic islet alpha-cell function. HPLC was used to authenticate the glucagon levels stimulated by arginine for 60 min and measured by RIA. Thirty-six percent of immunoreactive glucagon was found in the fractions representing authentic glucagon, whereas the remaining 64% eluted earlier. Experiments examining the fate of radiolabeled glucagon exposed to HIT cells revealed time-dependent degradation of the radioisotope to earlier eluting forms, which accounted for approximately 50% of the radioactivity by 60 min and was complete by 18 h, indicating that the early peak detected by RIA represented a metabolite of glucagon. Radioisotopic insulin was degraded more slowly with an apparent half-life of approximately 36 h. We conclude that HIT cells are not only able to synthesize, secrete, and degrade insulin, but also much smaller amounts of glucagon.
Resumo:
Intrathecal injections of 50 to 100 micro g of (N-acetylmuramyl-L-alanyl-D-isoglutamine) muramyl dipeptide (MDP)/rabbit dose-dependently triggered tumor necrosis factor alpha (TNF-alpha) secretion (12 to 40,000 pg/ml) preceding the influx of leukocytes in the subarachnoid space of rabbits. Intrathecal instillation of heat-killed unencapsulated R6 pneumococci produced a comparable leukocyte influx but only a minimal level of preceding TNF-alpha secretion. The stereochemistry of the first amino acid (L-alanine) of the MDP played a crucial role with regard to its inflammatory potential. Isomers harboring D-alanine in first position did not induce TNF-alpha secretion and influx of leukocytes. This stereospecificity of MDPs was also confirmed by measuring TNF-alpha release from human peripheral mononuclear blood cells stimulated in vitro. These data show that the inflammatory potential of MDPs depends on the stereochemistry of the first amino acid of the peptide side chain and suggest that intact pneumococci and MDPs induce inflammation by different pathways.
Resumo:
The objective of this study was to compare the effects of 3 different fluid types for resuscitation after experimentally induced hemorrhagic shock in anesthetized chickens and to evaluate partial pressures of carbon dioxide measured in arterial blood (Paco2), with a transcutaneous monitor (TcPco2), with a gastric intraluminal monitor (GiPco2), and by end tidal measurements (Etco2) under stable conditions and after induced hemorrhagic shock. Hemorrhagic shock was induced in 40 white leghorn chickens by removing 50% of blood volume by phlebotomy under general anesthesia. Birds were divided into 4 groups: untreated (control group) and treated with intravenous hetastarch (haes group), with a hemoglobin-based oxygen carrier (hemospan group), or by autotransfusion (blood group). Respiratory rates, heart rates, and systolic arterial blood pressure (SAP) were compared at 8 time points (baseline [T0]; at the loss of 10% [T10%], 20% [T20%], 30% [T30%], 40% [T40%], and 50% [T50%] of blood volume; at the end of resuscitation [RES]; and at the end of anesthesia [END]). Packed cell volume (PCV) and blood hemoglobin content were compared at 6 time points (T0, T50%, RES, and 1, 3, and 7 days after induced hemorrhagic shock). Measurements of Paco2, TcPco2, GiPco2, and Etco2 were evaluated at 2 time points (T0 and T50%), and venous lactic acid concentrations were evaluated at 3 time points (T0, T50%, and END). No significant differences were found in mortality, respiratory rate, heart rate, PCV, or hemoglobin values among the 4 groups. Birds given fluid resuscitation had significantly higher SAPs after fluid administration than did birds in the control group. In all groups, PCV and hemoglobin concentrations began to rise by day 3 after phlebotomy, and baseline values were reached 7 days after blood removal. At T0, TcPco2 did not differ significantly from Paco2, but GiPco2 and Etco2 differed significantly from Paco2. After hemorrhagic shock, GiPco2 and TcPco2 differed significantly from Paco2. The TcPco2 or GiPco2 values did not differ significantly at any time point in birds that survived or died in any of the groups and across all groups. These results showed no difference in mortality in leghorn chickens treated with fluid resuscitation after hemorrhagic shock and that the PCV and hemoglobin concentrations increased by 3 days after acute hemorrhage with or without treatment. The different CO2 measurements document changes in CO2-values consistent with poor perfusion and may prove useful for serial evaluation of responses to shock and shock treatment.
Resumo:
Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.
Resumo:
Chronic inflammation is a fundamental aspect of metabolic disorders such as obesity, diabetes and cardiovascular disease. Cholesterol crystals are metabolic signals that trigger sterile inflammation in atherosclerosis, presumably by activating inflammasomes for IL-1β production. We found here that atherogenesis was mediated by IL-1α and we identified fatty acids as potent inducers of IL-1α-driven vascular inflammation. Fatty acids selectively stimulated the release of IL-1α but not of IL-1β by uncoupling mitochondrial respiration. Fatty acid-induced mitochondrial uncoupling abrogated IL-1β secretion, which deviated the cholesterol crystal-elicited response toward selective production of IL-1α. Our findings delineate a previously unknown pathway for vascular immunopathology that links the cellular response to metabolic stress with innate inflammation, and suggest that IL-1α, not IL-1β, should be targeted in patients with cardiovascular disease.