2 resultados para Garden plants
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Many animal-pollinated plant species have been introduced to non-native regions without their usual pollinators. Nevertheless, some of these alien species managed to establish reproducing naturalized populations, which might negatively affect native plants. Recent studies have shown that many naturalized alien species can readily attract native pollinators. However, it is not known whether alien species that have not established naturalized populations are less successful in attracting pollinators. Therefore, we tested whether flower-visitation rates are lower for non-naturalized aliens than for naturalized alien and native species. We conducted a comparative study on flower visitation of 185 native, 37 naturalized alien and 224 non-naturalized alien plant species in the Botanical Garden of Bern, Switzerland. Our phylogenetically corrected analyses showed that non-naturalized alien species received fewer flower visitors than both naturalized alien and native species. Native, naturalized alien and non-naturalized alien species were visited by similar flower-visitor communities. Furthermore, among the naturalized alien species, the ones with a broader distribution range in Switzerland received a more diverse set of flower visitors. Although it has been suggested that most alien plants can readily integrate into native plant–pollinator networks, we show evidence that the capacity to attract flower visitors in non-native regions is different for naturalized and non-naturalized alien plants. Therefore, we conclude that successful naturalization of alien plants may be related to flower visitation.
Resumo:
Abstract A major task in ecology is to establish the degree of generality of ecological mechanisms. Here we present results from a multi-species experiment that tested whether a set of invasive species altered the soil conditions to the detriment of other species by releasing allelopathic compounds or inducing shifts in soil biota composition, and whether this effect was more pronounced relative to a set of closely related native species. We pre-cultivated soil with 23 exotic invasive, 19 related native and 6 related exotic garden species and used plain soil as a control. To separate allelopathy from effects on the soil biota, we sterilized half of the soil. Then, we compared the effect of soil pre-cultivation and sterilization on germination and growth of four native test species in two experiments. The general effect of soil sterilization was positive. The effect of soil pre-cultivation on test species performance was neutral to positive, and sterilization reduced this positive effect. This indicates general absence of allelopathic compounds and a shift toward a less antagonistic soil biota by cultivation species. In both experiments, pre-cultivation effects did not differ systematically between exotic invasive, exotic garden or native species. Our results do not support the hypothesis that invasive plants generally inhibit the growth of others by releasing allelopathic compounds or accumulating a detrimental soil biota.