14 resultados para GROUP-A STREPTOCOCCI

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have characterized the pattern of brain injury in a rat model of meningitis caused by group B streptococci (GBS). Infant rats (12-14 days old; n = 69) were infected intracisternally with 10 microliters of GBS (log10(2.3) to 4.5 colony-forming units). Twenty hours later, illness was assessed clinically and cerebrospinal fluid was cultured. Animals were either immediately euthanized for brain histopathology or treated with antibiotics and examined later. Early GBS meningitis was characterized clinically by severe obtundation and seizures, and histopathologically by acute inflammation in the subarachnoid space and ventricles, a vasculopathy characterized by vascular engorgement, and neuronal injury that was most prominent in the cortex and often followed a vascular pattern. Incidence of seizures, vasculopathy and neuronal injury correlated with the inoculum size (p < 0.01). Early injury was almost completely prevented by treatment with dexamethasone. Within days after meningitis, injured areas became well demarcated and showed new cellular infiltrates. Thirty days post-infection, brain weights of infected animals treated with antibiotics were decreased compared to uninfected controls (1.39 +/- 0.18 vs 1.64 +/- 0.1 g; p < 0.05). Thus, GBS meningitis in this model caused extensive cortical neuronal injury resembling severe neonatal meningitis in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perianal streptococcal dermatitis is a common disease. The typical clinical picture includes perianal erythema, pruritus, painful defaecation and bloody stools. The diagnosis is made by a swab taken from the affected skin with bacterial culture. Therapy consists of penicillin for 10 days. Screening for affected persons in contact with the patient is indicated because perianal streptococcal dermatitis is known to be highly contagious. Relapse is common and therefore follow-up visits are recommended. In case of relapse, a first or second generation cephalosporin may be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the rates of penicillin, clindamycin and erythromycin resistance and the serotype distribution among isolates of group B streptococcus (GBS) obtained from pregnant women at the University Hospital of Bern in Switzerland. METHODS We prospectively collected screening samples for GBS colonisation at the University Women's Hospital Bern, Switzerland, between March 2009 and August 2010. We included 364 GBS isolates collected from vaginal, cervical or vaginal-perianal swabs at any gestation time. The minimal inhibitory concentrations for penicillin, clindamycin and erythromycin were established using Etest with 24 hours of incubation, and inducible clindamycin resistance was tested with double disk diffusion tests. Serotyping was done with a rapid latex agglutination test or, if not conclusive, with polymerase chain-reaction (PCR) testing. We looked for significant associations between resistance patterns, age groups, serotype and ethnicity. RESULTS All isolates were susceptible to penicillin. Resistance rates were 14.5% for erythromycin and 8.2% for clindamycin. Of 364 isolates, 5.8% were susceptible to clindamycin but not to erythromycin, although demonstrating inducible clindamycin resistance. Hence, the final reported clindamycin resistance rate was 14%. Serotype III was the most frequent serotype (29%), followed by V (25%) and Ia (19%). Serotype V was associated with erythromycin resistance (p = 0.0007). In comparison with all other ethnicities, patients from Asia showed a higher proportion of erythromycin and clindamycin resistance (p = 0.018). No significant association between resistance patterns and age groups was found. CONCLUSION In pregnant women with GBS colonisation, penicillin is the antibiotic of choice for intrapartum prophylaxis to prevent neonatal early-onset GBS sepsis. In women with penicillin allergy and at high risk for anaphylactic reaction, clindamycin may be an alternative. The resistance rate for clindamycin at our institution was 14%; therefore, susceptibility must be tested before administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen intermediates (ROI) contribute to neuronal injury in cerebral ischemia and trauma. In this study we explored the role of ROI in bacterial meningitis. Meningitis caused by group B streptococci in infant rats led to two distinct forms of neuronal injury, areas of necrosis in the cortex and neuronal loss in the dentate gyrus of the hippocampus, the latter showing evidence for apoptosis. Staining of brain sections with diaminobenzidine after perfusion with manganese buffer and measurement of lipid peroxidation products in brain homogenates both provided evidence that meningitis led to the generation of ROI. Treatment with the radical scavenger alpha-phenyl-tert-butyl nitrone (PBN) (100 mg/kg q8h i.p.) beginning at the time of infection completely abolished ROI detection and the increase in lipidperoxidation. Cerebral cortical perfusion was reduced in animals with meningitis to 37.5+/-21.0% of uninfected controls (P < 0.05), and PBN restored cortical perfusion to 72.0+/-8.1% of controls (P < 0.05 vs meningitis). PBN also completely prevented neuronal injury in the cortex and hippocampus, when started at the time of infection (P < 0.02), and significantly reduced both forms of injury, when started 18 h after infection together with antibiotics (P < 0.004 for cortex and P < 0.001 for hippocampus). These data indicate that the generation of ROI is a major contributor to cerebral ischemia and necrotic and apoptotic neuronal injury in this model of neonatal meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) causes invasive infections in neonates, older adults and patients with comorbidities. β-hemolysin/cytolysin is an important GBS virulence factor. It is encoded by the cyl operon and confers GBS hemolytic activity. Isolates displaying hyperpigmentation are typically hyperhemolytic. Comparison of clonally identical isolates displaying different levels of pigmentation has shown transcriptional dysregulation due to mutations in components of the control of the virulence S/R (CovS/R) regulatory system. In addition, hyperpigmented isolates show decreased CAMP factor and decreased capsule thickness. In analogy to findings in group A Streptococcus, a pivotal role of CovS/R has been proposed in the host-pathogen interaction of invasive GBS infection. However, corresponding investigations on multiple clinical GBS isolates have not been performed. We prospectively collected hyperpigmented isolates found in a diagnostic laboratory and performed phenotypic, molecular and transcriptional analyses. In the period from 2008 to 2012, we found 10 isolates obtained from 10 patients. The isolates reflected both invasive pathogens and colonizers. In three cases, clonally identical but phenotypically different variants were also found. Hence, the analyses included 13 isolates. No capsular serotype was found to be significantly more frequent. Bacterial pigments were analyzed via spectrophotometry and for their hemolytic activity. Data obtained for typical absorbance spectra peaks correlated significantly with hemolytic activity. Molecular analysis of the cyl operon showed that it was conserved in all isolates. The covR sequence displayed mutations in five isolates; in one isolate, the CovR binding site to cylX was abrogated. Our results on clinical isolates support previous findings on CovR-deficient isogenic mutants, but suggest that - at least in some clinical isolates - for β-hemolysin/cytolysin and CAMP factor production, other molecular pathways may be involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Group B streptococci (GBS) may lead to early onset neonatal sepsis with severe morbidity and mortality of newborns. Intrapartum detection of GBS is needed. The objective was to compare a PCR-based test performed in the laboratory versus labor ward. STUDY DESIGN 300 patients were included prospectively. In phase I, swabs were analyzed by selective culture and rapid PCR in the laboratory. In phase II, swabs were analyzed accordingly, but the PCR test was conducted in labor ward. Test performances were analyzed and compared. RESULTS In phase I the rapid PCR test had a sensitivity of 85.71% and a specificity of 95.9%. The GBS colonization rate was 18.67%. Overall 8.5% of the PCR results were invalid. In phase II the PCR test showed a sensitivity of 85.71% and a specificity of 95.65%. The GBS colonization rate was 23.3%. Overall 23.5% of swabs tested with PCR were invalid. Initiation of specific, short 2-hour training for operating personnel in the labor ward reduced the invalid test rate to 13.4%. CONCLUSION The rapid PCR-based test yields adequate results to identify GBS colonization when performed in labor ward. In order to reduce the number of invalid tests a short training period is needed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Early onset neonatal sepsis due to Group B streptococci (GBS) is responsible for severe morbidity and mortality of newborns. While different preventive strategies to identify women at risk are being recommended, the optimal strategy depends on the incidence of GBS-sepsis and on the prevalence of anogenital GBS colonization. We therefore aimed to assess the Group B streptococci prevalence and its consequences on different prevention strategies. We analyzed 1316 pregnant women between March 2005 and September 2006 at our institution. The prevalence of GBS colonization was determined by selective cultures of anogenital smears. The presence of risk factors was analyzed. In addition, the direct costs of screening and intrapartum antibiotic prophylaxis were estimated for different preventive strategies. The prevalence of GBS colonization was 21%. Any maternal intrapartum risk factor was present in 37%. The direct costs of different prevention strategies have been estimated as follows: risk-based: 18,500 CHF/1000 live births, screening-based: 50,110 CHF/1000 live births, combined screening- and risk-based: 43,495/1000 live births. Strategies to prevent GBS-sepsis in newborn are necessary. With our colonization prevalence of 21%, and the intrapartum risk profile of women, the screening-based approach seems to be superior as compared to a risk-based approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel non-culture based 16S rRNA Terminal Restriction Fragment Length Polymorphism (T-RFLP) method using the restriction enzymes Tsp509I and Hpy166II was developed for the characterization of the nasopharyngeal microbiota and validated using recently published 454 pyrosequencing data. 16S rRNA gene T-RFLP for 153 clinical nasopharyngeal samples from infants with acute otitis media (AOM) revealed 5 Tsp509I and 6 Hpy166II terminal fragments (TFs) with a prevalence of >10%. Cloning and sequencing identified all TFs with a prevalence >6% allowing a sufficient description of bacterial community changes for the most important bacterial taxa. The conjugated 7-valent pneumococcal polysaccharide vaccine (PCV-7) and prior antibiotic exposure had significant effects on the bacterial composition in an additive main effects and multiplicative interaction model (AMMI) in concordance with the 16S rRNA 454 pyrosequencing data. In addition, the presented T-RFLP method is able to discriminate S. pneumoniae from other members of the Mitis group of streptococci, which therefore allows the identification of one of the most important human respiratory tract pathogens. This is usually not achieved by current high throughput sequencing protocols. In conclusion, the presented 16S rRNA gene T-RFLP method is a highly robust, easy to handle and a cheap alternative to the computationally demanding next-generation sequencing analysis. In case a lot of nasopharyngeal samples have to be characterized, it is suggested to first perform 16S rRNA T-RFLP and only use next generation sequencing if the T-RFLP nasopharyngeal patterns differ or show unknown TFs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute meningitis is a medical emergency, particularly in patients with rapidly progressing disease, mental status changes or neurological deficits. The majority of cases of bacterial meningitis are caused by a limited number of species, i.e. Streptococcus pneumoniae, Neisseria meningitis, Listeria monocytogenes, group B Streptococci (Streptococcus agalactiae), Haemophilus influenzae and Enterobacteriaceae. Many other pathogens can occasionally cause bacterial meningitis, often under special clinical circumstances. Treatment of meningitis includes two main goals: Eradication of the infecting organism, and management of CNS and systemic complications. Empiric therapy should be initiated without delay, as the prognosis of the disease depends on the time when therapy is started. One or two blood cultures should be obtained before administering the first antibiotic. Empiric therapy is primarily based on the age of the patient, with modifications if there are positive findings on CSF gram stain or if the patient presents with special risk factors. It is safer to choose regimens with broad coverage, as they can usually be modified within 24-48 hours, when antibiotic sensitivities of the infecting organism become available. Adjunctive therapy with dexamethasone is also administered in severely ill patients concomitantly with the first antibiotic dose. In patients who are clinically stable and are unlikely to be adversely affected if antibiotics are not administered immediately, including those with suspected viral or chronic meningitis, a lumbar puncture represents the first step, unless there is clinical suspicion of an intracerebral mass lesion. Findings in the CSF and on CT scan, if performed, will guide the further diagnostic work-up and therapy in all patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sustained high-level exposure to glutamate, an excitatory amino acid neurotransmitter, leads to neuronal death. Kynurenic acid attenuates the toxic effects of glutamate by inhibition of neuronal excitatory amino acid receptors, including the N-methyl-D-aspartate subtype. To evaluate the role of glutamate in causing neuronal injury in a rat model of meningitis due to group B streptococci, animals were treated with kynurenic acid (300 mg/kg subcutaneously once daily) or saline beginning at the time of infection. Histopathologic examination after 24-72 h showed two distinct forms of neuronal injury, areas of neuronal necrosis in the cortex and injury of dentate granule cells in the hippocampus. Animals treated with kynurenic acid showed significantly less neuronal injury (P < .03) in the cortex and the hippocampus than did untreated controls. These results suggest an important contribution of glutamate to neurotoxicity in this animal model of neonatal meningitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Brain-derived neurotrophic factor (BDNF) blocks activation of caspase-3, reduces translocation of apoptosis-inducing factor (AIF), attenuates excitotoxicity of glutamate, and increases antioxidant enzyme activities. The mechanisms of neuroprotection suggest that BDNF may be beneficial in bacterial meningitis. METHODS To assess a potentially beneficial effect of adjuvant treatment with BDNF in bacterial meningitis, 11-day-old infant rats with experimental meningitis due to Streptococcus pneumoniae or group B streptococci (GBS) were randomly assigned to receive intracisternal injections with either BDNF (3 mg/kg) or equal volumes (10 mu L) of saline. Twenty-two hours after infection, brains were analyzed, by histomorphometrical examination, for the extent of cortical and hippocampal neuronal injury. RESULTS Compared with treatment with saline, treatment with BDNF significantly reduced the extent of 3 distinct forms of brain cell injury in this disease model: cortical necrosis in meningitis due to GBS (median, 0.0% [range, 0.0%-33.7%] vs. 21.3% [range, 0.0%-55.3%]; P<.03), caspase-3-dependent cell death in meningitis due to S. pneumoniae (median score, 0.33 [range, 0.0-1.0] vs. 1.10 [0.10-1.56]; P<.05), and caspase-3-independent hippocampal cell death in meningitis due to GBS (median score, 0 [range, 0-2] vs. 0.88 [range, 0-3.25]; P<.02). The last form of injury was associated with nuclear translocation of AIF. CONCLUSION BDNF efficiently reduces multiple forms of neuronal injury in bacterial meningitis and may hold promise as adjunctive therapy for this disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial meningitis causes neurological sequelae in up to 50% of survivors. Two pathogens known for their propensity to cause severe neurological damage are Streptococcus pneumoniae and group B streptococci. Some forms of neuronal sequelae, such as learning and memory deficits, have been associated with neuronal injury in the hippocampus. To learn more about hippocampal injury in meningitis, we performed a comparative study in bacterial meningitis due to S. pneumoniae and group B streptococcus, in which 11-day-old infant rats were infected intracisternally with either of the two pathogens. Histopathological examination of the neuronal injury in the dentate gyrus of the hippocampus showed that S. pneumoniae caused predominantly classical apoptotic cell death. Cells undergoing apoptosis were located only in the subgranular zone and stained positive for activated caspase-3 and TUNEL. Furthermore, dividing progenitor cells seemed particularly sensitive to this form of cell death. Group B streptococcus was mainly responsible for a caspase-3-independent (and TUNEL-negative) form of cell death. Compared with the morphological features found in apoptosis (e.g., apoptotic bodies), this form of neuronal death was characterized by clusters of uniformly shrunken cells. It affected the dentate gyrus throughout the blade, showing no preferences for immature or mature neurons. Thus, depending on the infecting agent, bacterial meningitis causes two distinct forms of cell injury in the dentate gyrus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Streptococcus spp. and other Gram-positive, catalase-negative cocci (PNC) form a large group of microorganisms which can be found in the milk of cows with intramammary infection. The most frequently observed PNC mastitis pathogens (major pathogens) are Streptococcus uberis, Strep. dysgalactiae, and Strep. agalactiae. The remaining PNC include a few minor pathogens and a large nonpathogenic group. Improved methods are needed for the accurate identification and differentiation of PNC. A total of 151 PNC were collected from cows with intramammary infection and conclusively identified by 16S rRNA sequencing as reference method. Nine phenotypic microbiological tests (alpha-hemolysis, CAMP reaction, esculin hydrolysis, growth on kanamycin esculin azide agar and on sodium chloride agar, inulin fermentation, hippurate hydrolysis, leucine aminopeptidase and pyrrolidonyl peptidase activity), multiplex PCR for the three major pathogens (target genes for Strep. uberis, Strep. dysgalactiae and Strep. agalactiae: pauA, 16S rRNA, and sklA3, respectively), and mass spectroscopy using the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF MS) were evaluated for the diagnosis and discrimination of the three clinically most relevant PNC. RESULTS The probability that a strain of Strep. uberis, Strep. dysgalactiae and Strep. agalactiae was correctly identified by combining the results of the 9 phenotypic tests was 92%, 90%, and 100%, respectively. Applying the multiplex PCR, all strains of the three major pathogens were correctly identified and no false positive results occurred. Correct identification was observed for all strains of Strep. uberis and Strep. agalactiae using MALDI-TOF MS. In the case of Strep. dysgalactiae, some variability was observed at the subspecies level, but all strains were allocated to one single cluster. CONCLUSIONS The results of the present study show that reliable identification of the clinically most relevant PNC (Strep. uberis, Strep. agalactiae and Strep. dysgalactiae) can be obtained by use of a combination of colony morphology, hemolysis type and catalase reaction, and a multiplex PCR with specific primers restricted to these 3 pathogens. The MALDI-TOF MS is a fast method that shows promising results, although identification of Strep. dysgalactiae at the subspecies level is not yet satisfactory.