13 resultados para GREENHOUSE GASES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methane and nitrous oxide are important greenhouse gases which show a strong increase in atmospheric mixing ratios since pre-industrial time as well as large variations during past climate changes. The understanding of their biogeochemical cycles can be improved using stable isotope analysis. However, high-precision isotope measurements on air trapped in ice cores are challenging because of the high susceptibility to contamination and fractionation. Here, we present a dry extraction system for combined CH4 and N2O stable isotope analysis from ice core air, using an ice grating device. The system allows simultaneous analysis of δD(CH4) or δ13C(CH4), together with δ15N(N2O), δ18O(N2O) and δ15N(NO+ fragment) on a single ice core sample, using two isotope mass spectrometry systems. The optimum quantity of ice for analysis is about 600 g with typical "Holocene" mixing ratios for CH4 and N2O. In this case, the reproducibility (1σ ) is 2.1‰ for δD(CH4), 0.18‰ for δ13C(CH4), 0.51‰ for δ15N(N2O), 0.69‰ for δ18O(N2O) and 1.12‰ for δ15N(NO+ fragment). For smaller amounts of ice the standard deviation increases, particularly for N2O isotopologues. For both gases, small-scale intercalibrations using air and/or ice samples have been carried out in collaboration with other institutes that are currently involved in isotope measurements of ice core air. Significant differences are shown between the calibration scales, but those offsets are consistent and can therefore be corrected for.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a vertically resolved zonal mean monthly mean global ozone data set spanning the period 1901 to 2007, called HISTOZ.1.0. It is based on a new approach that combines information from an ensemble of chemistry climate model (CCM) simulations with historical total column ozone information. The CCM simulations incorporate important external drivers of stratospheric chemistry and dynamics (in particular solar and volcanic effects, greenhouse gases and ozone depleting substances, sea surface temperatures, and the quasi-biennial oscillation). The historical total column ozone observations include ground-based measurements from the 1920s onward and satellite observations from 1970 to 1976. An off-line data assimilation approach is used to combine model simulations, observations, and information on the observation error. The period starting in 1979 was used for validation with existing ozone data sets and therefore only ground-based measurements were assimilated. Results demonstrate considerable skill from the CCM simulations alone. Assimilating observations provides additional skill for total column ozone. With respect to the vertical ozone distribution, assimilating observations increases on average the correlation with a reference data set, but does not decrease the mean squared error. Analyses of HISTOZ.1.0 with respect to the effects of El Niño–Southern Oscillation (ENSO) and of the 11 yr solar cycle on stratospheric ozone from 1934 to 1979 qualitatively confirm previous studies that focussed on the post-1979 period. The ENSO signature exhibits a much clearer imprint of a change in strength of the Brewer–Dobson circulation compared to the post-1979 period. The imprint of the 11 yr solar cycle is slightly weaker in the earlier period. Furthermore, the total column ozone increase from the 1950s to around 1970 at northern mid-latitudes is briefly discussed. Indications for contributions of a tropospheric ozone increase, greenhouse gases, and changes in atmospheric circulation are found. Finally, the paper points at several possible future improvements of HISTOZ.1.0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 222Radon tracer method is a powerful tool to estimate local and regional surface emissions of, e.g., greenhouse gases. In this paper we demonstrate that in practice, the method as it is commonly used, produces inaccurate results in case of nonhomogeneously spread emission sources, and we propose a different approach to account for this. We have applied the new methodology to ambient observations of CO2 and 222Radon to estimate CO2 surface emissions for the city of Bern, Switzerland. Furthermore, by utilizing combined measurements of CO2 and δ(O2/N2) we obtain valuable information about the spatial and temporal variability of the main emission sources. Mean net CO2 emissions based on 2 years of observations are estimated at (11.2 ± 2.9) kt km−2 a−1. Oxidative ratios indicate a significant influence from the regional biosphere in summer/spring and fossil fuel combustion processes in winter/autumn. Our data indicate that the emissions from fossil fuels are, to a large degree, related to the combustion of natural gas which is used for heating purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methane is an important greenhouse gas, responsible for about 20 of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios � which differ in fossil fuel and microbial emissions � to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments1 places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond2, 3, 4. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise5, ocean acidification6, 7 and net primary production on land8, 9. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies10, climate sensitivity11 and carbon cycle feedbacks12, 13 along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community14, 15, 16, 17 to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The past 1500 years provide a valuable opportunity to study the response of the climate system to external forcings. However, the integration of paleoclimate proxies with climate modeling is critical to improving the understanding of climate dynamics. In this paper, a climate system model and proxy records are therefore used to study the role of natural and anthropogenic forcings in driving the global climate. The inverse and forward approaches to paleoclimate data–model comparison are applied, and sources of uncertainty are identified and discussed. In the first of two case studies, the climate model simulations are compared with multiproxy temperature reconstructions. Robust solar and volcanic signals are detected in Southern Hemisphere temperatures, with a possible volcanic signal detected in the Northern Hemisphere. The anthropogenic signal dominates during the industrial period. It is also found that seasonal and geographical biases may cause multiproxy reconstructions to overestimate the magnitude of the long-term preindustrial cooling trend. In the second case study, the model simulations are compared with a coral δ18O record from the central Pacific Ocean. It is found that greenhouse gases, solar irradiance, and volcanic eruptions all influence the mean state of the central Pacific, but there is no evidence that natural or anthropogenic forcings have any systematic impact on El Niño–Southern Oscillation. The proxy climate relationship is found to change over time, challenging the assumption of stationarity that underlies the interpretation of paleoclimate proxies. These case studies demonstrate the value of paleoclimate data–model comparison but also highlight the limitations of current techniques and demonstrate the need to develop alternative approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales spanning millennia, and are thus useful to examine the role of fire in the carbon cycle and climate system. Here we use the specific biomarker levoglucosan together with black carbon and ammonium concentrations from the North Greenland Eemian (NEEM) ice cores (77.49° N, 51.2° W; 2480 m a.s.l) over the past 2000 years to infer changes in boreal fire activity. Increases in boreal fire activity over the periods 1000–1300 CE and decreases during 700–900 CE coincide with high-latitude NH temperature changes. Levoglucosan concentrations in the NEEM ice cores peak between 1500 and 1700 CE, and most levoglucosan spikes coincide with the most extensive central and northern Asian droughts of the past millennium. Many of these multi-annual droughts are caused by Asian monsoon failures, thus suggesting a connection between low- and high-latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the Greenland Ice Cap. During major fire events, however, isotopic analyses of dust, back trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A state-of-the-art inverse model, CarbonTracker Data Assimilation Shell (CTDAS), was used to optimize estimates of methane (CH4) surface fluxes using atmospheric observations of CH4 as a constraint. The model consists of the latest version of the TM5 atmospheric chemistry-transport model and an ensemble Kalman filter based data assimilation system. The model was constrained by atmospheric methane surface concentrations, obtained from the World Data Centre for Greenhouse Gases (WDCGG). Prior methane emissions were specified for five sources: biosphere, anthropogenic, fire, termites and ocean, of which bio-sphere and anthropogenic emissions were optimized. Atmospheric CH 4 mole fractions for 2007 from northern Finland calculated from prior and optimized emissions were compared with observations. It was found that the root mean squared errors of the posterior esti - mates were more than halved. Furthermore, inclusion of NOAA observations of CH 4 from weekly discrete air samples collected at Pallas improved agreement between posterior CH 4 mole fraction estimates and continuous observations, and resulted in reducing optimized biosphere emissions and their uncertainties in northern Finland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effective policies combating global warming and incentivising reduction of greenhouse gases face fundamental collective action problems. States defending short term interests avoid international commitments and seek to benefit from measures combating global warming taken elsewhere. The paper explores the potential of Common Concern as an emerging principle of international law, in particular international environmental law, in addressing collective action problems and the global commons. It expounds the contours of the principle, its relationship to common heritage of mankind, to shared and differentiated responsibility and to public goods. It explores its potential to provide the foundations not only for international cooperation, but also to justify, and delimitate at the same time, unilateral action at home and deploying extraterritorial effects in addressing the challenges of global warming and climate change mitigation. As unilateral measures mainly translate into measures of trade policy, the principle of Common Concern is inherently linked and limited by existing legal disciplines in particular of the law of the World Trade Organization.