10 resultados para GRASP-CP

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present SUSY_FLAVOR version 2 — a Fortran 77 program that calculates low-energy flavor observables in the general R-parity conserving MSSM. For a set of MSSM parameters as input, the code gives predictions for: 1. Electric dipole moments of the leptons and the neutron. 2. Anomalous magnetic moments (i.e. g − 2) of the leptons. 3. Radiative lepton decays (μ → eγ and τ → μγ , eγ ). 4. Rare Kaon decays (K0 L → π0 ¯νν and K+ → π+ ¯νν). 5. Leptonic B decays (Bs,d → l+l−, B → τ ν and B → Dτ ν). 6. Radiative B decays (B → ¯ Xsγ ). 7. ΔF = 2 processes ( ¯ K0–K0, ¯D–D, ¯Bd–Bd and ¯Bs–Bs mixing). Comparing to SUSY_FLAVOR v1, where the matching conditions were calculated strictly at one-loop level, SUSY_FLAVOR v2 performs the resummation of all chirally enhanced corrections, i.e. takes into account the enhanced effects from tan β and/or large trilinear soft mixing terms to all orders in perturbation theory. Also, in SUSY_FLAVOR v2 new routines calculation of B → (D)τ ν, g − 2, radiative lepton decays and Br(l → l′γ ) were added. All calculations are done using exact diagonalization of the sfermion mass matrices. The program can be obtained from http://www.fuw.edu.pl/susy_flavor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many observed time series of the global radiosonde or PILOT networks exist as fragments distributed over different archives. Identifying and merging these fragments can enhance their value for studies on the three-dimensional spatial structure of climate change. The Comprehensive Historical Upper-Air Network (CHUAN version 1.7), which was substantially extended in 2013, and the Integrated Global Radiosonde Archive (IGRA) are the most important collections of upper-air measurements taken before 1958. CHUAN (tracked) balloon data start in 1900, with higher numbers from the late 1920s onward, whereas IGRA data start in 1937. However, a substantial fraction of those measurements have not been taken at synoptic times (preferably 00:00 or 12:00 GMT) and on altitude levels instead of standard pressure levels. To make them comparable with more recent data, the records have been brought to synoptic times and standard pressure levels using state-of-the-art interpolation techniques, employing geopotential information from the National Oceanic and Atmospheric Administration (NOAA) 20th Century Reanalysis (NOAA 20CR). From 1958 onward the European Re-Analysis archives (ERA-40 and ERA-Interim) available at the European Centre for Medium-Range Weather Forecasts (ECMWF) are the main data sources. These are easier to use, but pilot data still have to be interpolated to standard pressure levels. Fractions of the same records distributed over different archives have been merged, if necessary, taking care that the data remain traceable back to their original sources. If possible, station IDs assigned by the World Meteorological Organization (WMO) have been allocated to the station records. For some records which have never been identified by a WMO ID, a local ID above 100 000 has been assigned. The merged data set contains 37 wind records longer than 70 years and 139 temperature records longer than 60 years. It can be seen as a useful basis for further data processing steps, most notably homogenization and gridding, after which it should be a valuable resource for climatological studies. Homogeneity adjustments for wind using the NOAA-20CR as a reference are described in Ramella Pralungo and Haimberger (2014). Reliable homogeneity adjustments for temperature beyond 1958 using a surface-data-only reanalysis such as NOAA-20CR as a reference have yet to be created. All the archives and metadata files are available in ASCII and netCDF format in the PANGAEA archive

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from δCP and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5δ C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has ~ 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract δCP from the data, the first LBNO phase can convincingly give evidence for CPV on the 3δ C.L. using today’s knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I argue that scientific realism, insofar as it is only committed to those scientific posits of which we have causal knowledge, is immune to Kyle Stanford’s argument from unconceived alternatives. This causal strategy (previously introduced, but not worked out in detail, by Anjan Chakravartty) is shown not to repeat the shortcomings of previous realist responses to Stanford’s argument. Furthermore, I show that the notion of causal knowledge underlying it can be made sufficiently precise by means of conceptual tools recently introduced into the debate on scientific realism. Finally, I apply this strategy to the case of Jean Perrin’s experimental work on the atomic hypothesis, disputing Stanford’s claim that the problem of unconceived alternatives invalidates a realist interpretation of this historical episode.