53 resultados para GLUTAMATE SYNTHASE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study was undertaken to identify changes in some important proteins involved in CO2 fixation (Rubisco, Rubisco activase (RA), Rubisco binding protein (RBP)), NH4+ assimilation (glutamine synthetase (GS) and glutamate synthase (GOGAT)), using immunoblotting, and in the antioxidative defense as a result of Cu or Mn excess in barley leaves (Hordeum vulgare L. cv. Obzor). Activities and isoenzyme patterns of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT), as well as the levels of ascorbate (ASC), non-protein sulfhydryl groups, hydrogen peroxide and oxidative damage to proteins were determined. Data were correlated to the accumulation of Cu or Mn in the leaves after 5 days supply of heavy metal (HM) excess in the nutrient solution. In the highest Cu excess (1500 μM), Rubisco LS and SS were reduced considerably whereas under the highest Mn concentrations (18,300 μM) only minor changes in Rubisco subunits were detected. The RBP was diminished under the highest concentrations of both Cu or Mn. The bands of RA changed differently comparing Cu and Mn toxicity. GS decreased and GOGAT was absent under the highest concentration of Cu. At Mn excess Fd-GOGAT diminished whereas GS was not apparently changed. The development of toxicity symptoms corresponded to an accumulation of Cu or Mn in the leaves and to a gradual increase in protein carbonylation, a lower SOD activity and elevated CAT and GPX activities. APX activity was diminished under Mn toxicity and was not changed under Cu excess. Generally, changes in the isoenzyme profiles were similar under both toxicities. An accumulation of H2O2 was observed only at Mn excess. Contrasting changes in the low-molecular antioxidants were detected when comparing both toxicities. Cu excess affected mainly the non-protein SH groups, while Mn influenced the ASC content. Oxidative stress under Cu or Mn toxicity was most probably the consequence of depletion in low-molecular antioxidants as a result of their involvement in detoxification processes and disbalance in antioxidative enzymes. The link between heavy metal accumulation in leaves, leading to different display of oxidative stress, and changes in individual chloroplast proteins is discussed in the article.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effects of environmental conditions influencing photosynthesis and photorespiration on senescence and net protein degradation were investigated in segments from the first leaf of young wheat (Triticum aestivum L. cv. Arina) plants. The segments were floated on H2O at 25, 30 or 35°C in continuous light (PAR: 50 or 150 µmol m−2 s−1) in ambient air and in CO2-depleted air. Stromal enzymes, including phosphoglycolate phosphatase, glutamine synthetase, ferredoxin-dependent glutamate synthase, phosphoribulokinase, and the peroxisomal enzyme, glycolate oxidase, were detected by SDS-PAGE followed by immunoblotting with specific antibodies. In general, the net degradation of proteins and chlorophylls was delayed in CO2-depleted air. However, little effect of CO2 on protein degradation was observed at 25°C under the lower level of irradiance. The senescence retardation by the removal of CO2 was most pronounced at 30°C and at the higher irradiance. The stromal enzymes declined in a coordinated manner. Immunoreactive fragments from the degraded polypeptides were in most cases not detectable. However, an insolubilized fragment of glycolate oxidase accumulated in vivo, especially at 25°C in the presence of CO2. Detection of this fragment was minimal after incubation at 30°C and completely absent on blots from segments kept at 35°C. In CO2-depleted air, the fragment was only weakly detectable after incubation at 25°C. The results from these investigations indicate that environmental conditions that influence photosynthesis may interfere with senescence and protein catabolism in wheat leaves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intact chloroplasts were isolated from mature pea (Pisum sativum L.) leaves in order to study the degradation of several stromal proteins in organello. Changes in the abundances of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), glutamine synthetase (EC 6.3.1.2) and ferredoxin-dependent glutamine:α-ketoglutarate aminotransferase (glutamate synthase; EC 1.4.7.1) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Coomassie-staining of the gels or immunoblotting using specific antibodies for the different enzymes. Degradation of several stromal proteins was strongly stimulated when intact chloroplasts were incubated in the light in the presence of dithiothreitol. Since free radicals may artificially accumulate in the chloroplast under such conditions and interfere with the stability of stromal proteins, the general relevance of these processes remains questionable. In the absence of light, proteolysis proceeded slowly in isolated chloroplasts and was not stimulated by dithiothreitol. Inhibition by ethylenediaminetetraacetic acid (EDTA), 1,10-phenanthroline or excess zinc ions as well as the requirement for divalent cations suggested that a zinc-containing metalloprotease participated in this process. Furthermore, light-independent degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase was enhanced in chloroplasts isolated from leaves in which senescence was accelerated by nitrogen starvation. Our results indicate that light-independent stromal protein degradation in intact chloroplasts may be analogous to proteolysis that occurs in intact leaves during senescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senescence-associated coordination in amounts of enzymes localized in different cellular compartments were determined in attached leaves of young wheat (Triticum aestivum L. cv. Arina) plants. Senescence was initiated at the time of full leaf elongation based on declines in total RNA and soluble protein. Removal of N from the growth medium just at the time of full leaf elongation enhanced the rate of senescence. Sustained declines in the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), and a marked decrease in the rbcS transcripts, just after full leaf elongation indicated that Rubisco synthesis/degradation was very sensitive to the onset of senescence. Rubisco activase amount also declined during senescence but the proportion of rca transcript relative to the total poly A RNA pool increased 3-fold during senescence. Thus, continued synthesis of activase may be required to maintain functional Rubisco throughout senescence. N stress led to declines in the amount of proteins located in the chloroplast, the peroxisome and the cytosol. Transcripts of the Clp protease subunits also declined in response to N stress, indicating that Clp is not a senescence-specific protease. In contrast to the other proteins, mitochondrial NADH-glutamate dehydrogenase (EC 1.4.1.2) was relatively stable during senescence and was not affected by N stress. During natural senescence with adequate plant nitrate supply the amount of nitrite reductase (EC 1.7.7.1) increased, and those of glutamine synthetase (EC 1.4.7.1) and glutamate synthase (EC 6.3.1.2) were stable. These results indicated that N assimilatory capacity can continue or even increase during senescence if the substrate supply is maintained. Differential stabilities of proteins, even within the same cellular compartment, indicate that proteolytic activity during senescence must be highly regulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: N-Acetylglutamate synthase (NAGS) deficiency is a rare urea cycle disorder, which may present in the neonatal period with severe hyperammonemia and marked neurological impairment. CASE REPORT: We report on a Turkish family with a patient who died due to hyperammonemia in the neonatal period. Reduced activity of NAGS and carbamyl phosphate synthetase were found at autopsy. A second child who developed hyperammonemia on the second day of life was immediately treated with arginine hydrochloride, sodium benzoate and protein restriction. After NAGS deficiency was suspected by enzyme analysis, sodium benzoate was replaced by N-carbamylglutamate (NCG). A third child who developed slight hyperammonemia on the third day of life was treated with NCG before enzyme analysis confirmed reduced NAGS activity. Neither of the patients developed hyperammonemia in the following years. After the human NAGS gene was identified, mutation analysis revealed that the older sibling on NCG therapy was homozygous for a 971G>A (W324X) mutation. The parents and the younger sibling were heterozygous. Therapy was continued in the older sibling until now without any adverse effects and favourable neurodevelopment outcome. In the younger sibling, therapy was stopped without any deterioration of urea cycle function. CONCLUSION: NAGS deficiency can be successfully treated with NCG and arginine hydrochloride with favourable outcome. Molecular diagnostic rather than enzyme analysis should be used in patients with suspected NAGS deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of conformationally constrained aspartate and glutamate analogues inhibit the glutamate transporter 1 (GLT-1, also known as EAAT2). To expand the search for such analogues, a virtual library of aliphatic aspartate and glutamate analogues was generated starting from the chemical universe database GDB-11, which contains 26.4 million possible molecules up to 11 atoms of C, N, O, F, resulting in 101026 aspartate analogues and 151285 glutamate analogues. Virtual screening was realized by high-throughput docking to the glutamate binding site of the glutamate transporter homologue from Pyrococcus horikoshii (PDB code: 1XFH ) using Autodock. Norbornane-type aspartate analogues were selected from the top-scoring virtual hits and synthesized. Testing and optimization led to the identification of (1R*,2R*,3S*,4R*,6R*)-2-amino-6-phenethyl-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid as a new inhibitor of GLT-1 with IC(50) = 1.4 ?M against GLT-1 and no inhibition of the related transporter EAAC1. The systematic diversification of known ligands by enumeration with help of GDB followed by virtual screening, synthesis, and testing as exemplified here provides a general strategy for drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical, postmortem and preclinical research strongly implicates dysregulation of glutamatergic neurotransmission in major depressive disorder (MDD). Recently, metabotropic glutamate receptors (mGluRs) have been proposed as attractive targets for the discovery of novel therapeutic approaches against depression. The aim of this study was to examine mGluR2/3 protein levels in the prefrontal cortex (PFC) from depressed subjects. In addition, to test whether antidepressants influence mGluR2/3 expression we also studied levels of mGluR2/3 in fluoxetine-treated monkeys. Postmortem human prefrontal samples containing Brodmann's area 10 (BA10) were obtained from 11 depressed and 11 psychiatrically healthy controls. Male rhesus monkeys were treated chronically with fluoxetine (dose escalated to 3mg/kg, p.o.; n=7) or placebo (n=6) for 39 weeks. The mGluR2/3 immunoreactivity was investigated using Western blot method. There was a robust (+67%) increase in the expression of the mGlu2/3 protein in the PFC of depressed subjects relative to healthy controls. The expression of mGlu2/3 was unchanged in the PFC of monkeys treated with fluoxetine. Our findings provide the first evidence that mGluR2/3 is elevated in the PFC in MDD. This observation is consistent with reports showing that mGluR2/3 antagonists exhibit antidepressant-like activity in animal models and demonstrates that these receptors are promising targets for the discovery of novel antidepressants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In skeletal muscles, the expression of neuronal NO synthase (nNOS) isoforms is uncharacterized at the protein level. We therefore conducted epitope mapping with anti-peptide-antibodies. Antibodies specific for the nNOS N-terminus recognized the 160-kDa alpha-isoform. In contrast, antibodies against the middle portion or the C-terminus of nNOS bound additionally to the truncated 140-kDa beta-isoform which lacks the PDZ-domain present in the alpha-isoform. All nNOS immunohistochemical reactivity was confined to the sarcolemma. Consistently, immunoblotting disclosed both nNOS-isoforms to be co-enriched in the membrane-associated fractions. The beta-isoform was co-immunoprecipitated with alpha-isoform antibodies in muscle extracts indicating an association of both nNOS-isoforms to direct the beta-variant to the sarcolemma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of neuronal nitric oxide synthase (nNOS) to angiogenesis in human skeletal muscle after endurance exercise is controversially discussed. We therefore ascertained whether the expression of nNOS is associated with the capillary density in biopsies of the vastus lateralis (VL) muscle that had been derived from 10 sedentary male subjects before and after moderate training (four 30-min weekly jogging sessions for 6 months, with a heart-rate corresponding to 75% VO(2)max). In these biopsies, nNOS was predominantly expressed as alpha-isoform with exon-mu and to a lesser extent without exon-mu, as determined by RT-PCR. The mRNA levels of nNOS were quantified by real-time PCR and related to the capillary-to-fibre ratio and the numerical density of capillaries specified by light microscopy. If the VL biopsies of all subjects were co-analysed, mRNA levels of nNOS were non-significantly elevated after training (+34%; P > 0.05). However, only five of the ten subjects exhibited significant (P ≤ 0.05) elevations in the capillary-to-fibre ratio (+25%) and the numerical density of capillaries (+21%) and were thus undergoing angiogenesis. If the VL biopsies of these five subjects alone were evaluated, the mRNA levels of nNOS were significantly up-regulated (+128%; P ≤ 0.05) and correlated positively (r = 0.8; P ≤ 0.01) to angiogenesis. Accordingly, nNOS protein expression in VL biopsies quantified by immunoblotting was significantly increased (+82%; P ≤ 0.05) only in those subjects that underwent angiogenesis. In conclusion, the expression of nNOS at mRNA and protein levels was statistically linked to capillarity after exercise suggesting that nNOS is involved in the angiogenic response to training in human skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical and preclinical evidence suggests a hyperactive glutamatergic system in clinical depression. Recently, the metabotropic glutamate receptor 5 (mGluR5) has been proposed as an attractive target for novel therapeutic approaches to depression. The goal of this study was to compare mGluR5 binding (in a positron emission tomography [PET] study) and mGluR5 protein expression (in a postmortem study) between individuals with major depressive disorder and psychiatrically healthy comparison subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiolipin is important for bacterial and mitochondrial stability and function. The final step in cardiolipin biosynthesis is catalyzed by cardiolipin synthase and differs mechanistically between prokaryotes and eukaryotes. To study the importance of cardiolipin synthesis for mitochondrial integrity, membrane protein complex formation, and cell proliferation in the human and animal pathogenic protozoan parasite, Trypanosoma brucei, we generated conditional cardiolipin synthase-knockout parasites. We found that cardiolipin formation in T. brucei procyclic forms is catalyzed by a bacterial-type cardiolipin synthase, providing experimental evidence for a prokaryotic-type cardiolipin synthase in a eukaryotic organism. Ablation of enzyme expression resulted in inhibition of de novo cardiolipin synthesis, reduction in cellular cardiolipin levels, alterations in mitochondrial morphology and function, and parasite death in culture. By using immunofluorescence microscopy and blue-native gel electrophoresis, cardiolipin synthase was shown to colocalize with inner mitochondrial membrane proteins and to be part of a large protein complex. During depletion of cardiolipin synthase, the levels of cytochrome oxidase subunit IV and cytochrome c1, reflecting mitochondrial respiratory complexes IV and III, respectively, decreased progressively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the influence of 17β-estradiol (E2) on nitric oxide (NO) production in endothelial cell cultures and the effect of topical E2 on the survival of skin flap transplants in a rat model. Human umbilical vein endothelial cells were treated with three different E2 concentrations and nitrite (NO2) concentrations, as well as endothelial nitric oxide synthase (eNOS) protein expressions were analyzed. In vivo, random-pattern skin flaps were raised in female Wistar rats 14 days following ovariectomy and treated with placebo ointment (group 1), E2 as gel (group 2), and E2 via plaster (group 3). Flap perfusion, survival, and NO2 levels were measured on postoperative day 7. In vitro, E2 treatment increased NO2 concentration in cell supernatant and eNOS expression in cell lysates (p < 0.05). In vivo, E2 treated (gel and plaster groups) demonstrated significantly increased skin flap survival compared to the placebo group (p < 0.05). E2 plaster-treated animals exhibited higher NO2 blood levels than placebo (p < 0.05) paralleling the in vitro observations. E2 increases NO production in endothelial cells via eNOS activation. Topical E2 application can significantly increase survival of ischemically challenged skin flaps in a rat model and may augment wound healing in other ischemic situations via activation of NO production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Hepatic sinusoidal resistance is regulated by vasoactive factors including endothelin-1 (ET-1) and nitric oxide (NO). In the absence of NO, vasoconstrictor response to endothelin is expected to predominate. Therefore, we hypothesized sensitivity to endothelin to be increased in mice lacking the endothelial cell NO synthase gene. Response of vascular resistance to endothelin was assessed in the in situ perfused liver of endothelial constitutive nitric oxide synthase (ecNOS) knockout and wild type mice. Livers were also harvested for RNA and protein isolation for quantitative PCR and Western blotting, respectively. The expression of endothelin receptors, isoenzymes of NO synthase, heme-oxygenase and adrenomedullin was quantified. RESULTS: Endothelin increased hepatic vascular resistance in a dose-dependent manner in both strains; however, this increase was significantly less in ecNOS knockout mice at physiologic concentrations. Expression of heme-oxygenases and adrenomedullin was similar in both groups, whereas inducible nitric oxide synthase (iNOS) protein was not detectable in either strain. mRNA levels of pre-pro-endothelin-1 and ETB receptor were comparable in both strains, while mRNA for ETA receptor was decreased in ecNOS knockouts. CONCLUSION: Livers of ecNOS knockout mice have a decreased sensitivity to endothelin at physiologic concentrations; this is associated with a decreased expression of ETA receptors, but not with other factors, such as iNOS, ETB receptors, adrenomedullin or heme-oxygenase. Further studies targeting adaptive changes in ETA receptor distribution and/or intracellular signaling downstream of the receptor are indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DC) are important cells at the interface between innate and adaptive immunity. DC have a key role in antigen processing and presentation to T cells. Effector functions of DC related to innate immunity have not been explored extensively. We show that bovine monocyte-derived DC (mDC) express inducible nitric oxide synthase (iNOS) mRNA and protein and produce NO upon triggering with interferon-gamma (IFN-gamma) and heat-killed Listeria monocytogenes (HKLM). An immunocytochemical analysis revealed that a sizeable subset (20-60%) copiously expresses iNOS (iNOShi) upon IFN-gamma/HKLM triggering, whereas the other subset expressed low levels of iNOS (iNOSlo). Monocyte-derived macrophages (mMphi) are more homogeneous with regard to iNOS expression. The number of cells within the iNOSlo mDC subset is considerably larger than the number of dead cells or cells unresponsive to IFN-gamma/HKLM. The large majority of cells translocated p65 to the nucleus upon triggering by IFN-gamma/HKLM. A contamination of mDC with iNOS-expressing mMphi was excluded as follows. (i) Cell surface marker analysis suggested that mDC were relatively homogeneous, and no evidence for a contaminating subset expressing macrophage markers (e.g. high levels of CD14) was obtained. (ii) iNOS expression was stronger in iNOShi mDC than in mMphi. The use of maturation-promoting stimuli revealed only subtle phenotypic differences between immature and mature DC in cattle. Nevertheless, these stimuli promoted development of considerably fewer iNOShi mDC upon triggering with IFN-gamma/HKLM. Immunocytochemical results showed that although a significant proportion of cells expressed iNOS only or TNF only upon triggering with IFN-gamma/HKLM, a significant number of cells expressed both iNOS and TNF, suggesting that TNF and iNOS producing (TIP) DC are present within bovine mDC populations obtained in vitro.