3 resultados para GILTS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Mycoplasma hyopneumoniae is the etiologic agent of enzootic pneumonia mainly occurring in fattening pigs. It is assumed that horizontal transmission of the pathogen during nursery and growing phase starts with few suckling pigs vertically infected by the sow. The aim of the present study was the exploration of the herd prevalence of M. hyopneumoniae infections in suckling pigs followed by an investigation of various herd specific factors for their potential of influencing the occurrence of this pathogen at the age of weaning. RESULTS In this cross-sectional study, 125 breeding herds were examined by taking nasal swabs from 20 suckling pigs in each herd. In total, 3.9% (98/2500) of all nasal swabs were tested positive for M. hyopneumoniae by real-time PCR. Piglets tested positive originated from 46 different herds resulting in an overall herd prevalence of 36.8% (46/125) for M. hyopneumoniae infection in pigs at the age of weaning. While the herds were epidemiologically characterized, the risk for demonstration of M. hyopneumoniae was significantly increased, when the number of purchased gilts per year was more than 120 (OR: 5.8), and when the number of farrowing pens per compartment was higher than 16 (OR: 3.3). In herds with a planned and segregated production, where groups of sows entered previously emptied farrowing units, the risk for demonstration of M. hyopneumoniae in piglets was higher in herds with two or four weeks between batches than in herds with one or three weeks between batches (OR: 2.7). CONCLUSIONS In this cross-sectional study, several risk factors could be identified enhancing the probability of breeding herds to raise suckling pigs already infected with M. hyopneumoniae at the time of weaning. Interestingly, some factors (farrowing rhythm, gilt acclimatisation issues) were overlapping with those also influencing the seroprevalences among sows or the transmission of the pathogen between older age groups. Taking the multifactorial character of enzootic pneumonia into account, the results of this study substantiate that a comprehensive herd specific prevention programme is a prerequisite to reduce transmission of and disease caused by M. hyopneumoniae.
Resumo:
Mastitis-Metritis-Agalactia (MMA), also known as postpartum dysgalactia syndrome (PPDS) is the most important disease complex in sows after birth. The present study compared 30 MMA problem herds (over 12% of farrowing sows affected) with 30 control farms (less than 10% of farrowing sows affected) to identify risk factors and treatment incidence. Important risk factors identified were in gilts the integration into the herd after the first farrowing, in gestating sows firm fecal consistency as well as in lactating sows soiled troughs, a low flow rate (<2 liters per minute) in drinking nipples and a high prevalence of lameness. The treatment incidence was also significantly different between the two groups. The MMA prevalence could be reduced through optimization of husbandry, feeding and management, which could essentially diminish the use of antibiotics.
Resumo:
BACKGROUND: This study was aimed at evaluating the clinical protection, the level of Porcine circovirus type 2 (PCV2) viremia and the immune response (antibodies and IFN-γ secreting cells (SC)) in piglets derived from PCV2 vaccinated sows and themselves vaccinated against PCV2 at different age, namely at 4, 6 and 8 weeks. The cohort study has been carried out over three subsequent production cycles (replicates). At the start/enrolment, 46 gilts were considered at first mating, bled and vaccinated. At the first, second and third farrowing, dams were bled and re-vaccinated at the subsequent mating after weaning piglets. Overall 400 piglets at each farrowing (first, second and third) were randomly allocated in three different groups (100 piglets/group) based on the timing of vaccination (4, 6 or 8 weeks of age). A fourth group was kept non-vaccinated (controls). Piglets were vaccinated intramuscularly with one dose (2 mL) of a commercial PCV2a-based subunit vaccine (Porcilis® PCV). Twenty animals per group were bled at weaning and from vaccination to slaughter every 4 weeks for the detection of PCV2 viremia, humoral and cell-mediated immune responses. Clinical signs and individual treatments (morbidity), mortality, and body weight of all piglets were recorded. RESULTS: All vaccination schemes (4, 6 and 8 weeks of age) were able to induce an antibody response and IFN-γ SC. The highest clinical and virological protection sustained by immune reactivity was observed in pigs vaccinated at 6 weeks of age. Overall, repeated PCV2 vaccination in sows at mating and the subsequent higher levels of maternally derived antibodies did not significantly interfere with the induction of both humoral and cell-mediated immunity in their piglets after vaccination. CONCLUSIONS: The combination of vaccination in sows at mating and in piglets at 6 weeks of age was more effective for controlling PCV2 natural infection, than other vaccination schemas, thus sustaining that some interference of MDA with the induction of an efficient immune response could be considered. In conclusion, optimal vaccination strategy needs to balance the levels of passive immunity, the management practices and timing of infection.