16 resultados para GENETIC-HETEROGENEITY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Dispersal and recruitment are central processes that shape the geographic and temporal distributions of populations of marine organisms. However, significant variability in factors such as reproductive output, larval transport, survival, and settlement success can alter the genetic identity of recruits from year to year. We designed a temporal and spatial sampling protocol to test for genetic heterogeneity among adults and recruits from multiple time points along a similar to 400 km stretch of the Oregon (USA) coastline. In total, 2824 adult and recruiting Balanus glandula were sampled between 2001 and 2008 from 9 sites spanning the Oregon coast. Consistent with previous studies, we observed high mitochondrial DNA diversity at the cytochrome oxidase I locus (884 unique haplotypes) and little to no spatial genetic population structure among the 9 sites (Phi(ST) = 0.00026, p = 0.170). However, subtle but significant temporal shifts in genetic composition were observed among year classes (Phi(ST) = 0.00071, p = 0.035), and spatial Phi(ST) varied from year to year. These temporal shifts in genetic structure were correlated with yearly differences in the strength of coastal upwelling (p = 0.002), with greater population structure observed in years with weaker upwelling. Higher levels of barnacle settlement were also observed in years with weaker upwelling (p < 0.001). These data suggest the hypothesis that low upwelling intensity maintains more local larvae close to shore, thereby shaping the genetic structure and settlement rate of recruitment year classes.
Resumo:
Several bacteria belonging to the family Pasteurellaceae are potential pathogens in rabbits. In particular, Pasteurella multocida is considered to be important, and outbreaks caused by this species result in considerable economic losses in rabbitries. However, Pasteurellaceae spp. isolated from rabbits are poorly characterized, and thus, proper identification of P. multocida isolates from these animals is problematic and often unsatisfactory, thereby hampering epidemiological investigations. Therefore, 228 isolates from rabbit populations originating from a breeding and fattening organization with group management and postmortem cases with pasteurellosis from individual owners were phenotypically and genotypically analyzed using biochemical tests and repetitive extragenic palindromic polymerase chain reaction (REP-PCR). Furthermore, 41 samples representing observed phenotypes were selected for phylogenetic analysis using 16S ribosomal RNA and rpoB genes. The REP-PCR typing and phylogenetic analyses correlated well and appeared to be distinct molecular methods for characterization of rabbit isolates. Phenotyping, however, diverged from molecular recognition, reflecting the problematic conventional diagnosis of these strains. The fermentation of sorbitol appeared to be an imprecise indicator for P. multocida subspecies classification. According to REP-PCR and sequencing results, 82% of the isolates were characterized as P. multocida subsp. multocida, 3% as P. multocida subsp. septica, and 5% as P. multocida. Further, 5% were identified as Pasteurella canis. The other 5% represented a homogeneous group of unknown species belonging to the Pasteurellaceae. Samples obtained from individual postmortem cases demonstrated a higher phenotypic and genetic heterogeneity than samples from group management rabbits.
Resumo:
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder of childhood onset. Clinical and biological evidence points to shared common central nervous system (CNS) pathology of ADHD and restless legs syndrome (RLS). It was hypothesized that variants previously found to be associated with RLS in two large genome-wide association studies (GWA), will also be associated with ADHD. SNPs located in MEIS1 (rs2300478), BTBD9 (rs9296249, rs3923809, rs6923737), and MAP2K5 (rs12593813, rs4489954) as well as three SNPs tagging the identified haplotype in MEIS1 (rs6710341, rs12469063, rs4544423) were genotyped in a well characterized German sample of 224 families comprising one or more affected sibs (386 children) and both parents. We found no evidence for preferential transmission of the hypothesized variants to ADHD. Subsequent analyses elicited nominal significant association with haplotypes consisting of the three SNPs in BTBD9 (chi2 = 14.8, df = 7, nominal p = 0.039). According to exploratory post hoc analyses, the major contribution to this finding came from the A-A-A-haplotype with a haplotype-wise nominal p-value of 0.009. However, this result did not withstand correction for multiple testing. In view of our results, RLS risk alleles may have a lower effect on ADHD than on RLS or may not be involved in ADHD. The negative findings may additionally result from genetic heterogeneity of ADHD, i.e. risk alleles for RLS may only be relevant for certain subtypes of ADHD. Genes relevant to RLS remain interesting candidates for ADHD; particularly BTBD9 needs further study, as it has been related to iron storage, a potential pathophysiological link between RLS and certain subtypes of ADHD.
Resumo:
The long QT syndrome (LQTS) is a genetic disorder characterized by prolongation of the QT interval in the electrocardiogram (ECG) and a propensity to "torsades de pointes" ventricular tachycardia frequently leading to syncope, cardiac arrest, or sudden death usually in young otherwise healthy individuals. LQTS caused by mutations of predominantly potassium and sodium ion channel genes or channel-interacting proteins leading to positive overcharge of myocardial cell with consequent heterogeneous prolongation of repolarization in various layers and regions of myocardium. These conditions facilitate the early after-depolarization and reentry phenomena underlying development of polymorphic ventricular tachycardia observed in patients with LQTS. Obtaining detailed patient history regarding cardiac events in the patient and his/her family members combined with careful interpretation of standard 12-lead ECG (with precise measurement of QT interval in all available ECGs and evaluation of T-wave morphology) usually is sufficient to diagnose the syndrome. The LQTS show great genetic heterogeneity and has been identified more than 500 mutations distributed in 10 genes: KCNQ1, HERG, SCN5A, KCNE1, KCNE2, ANKB, KCNJ2, CACNA1A, CAV3 and SCN4B. Despite advances in the field, 25-30% of patients remain undiagnosed genetic. Genetic testing plays an important role and is particularly useful in cases with nondiagnostic or borderline ECG findings.
Resumo:
In this study, 231 strains of Yersinia enterocolitica, 25 strains of Y. intermedia, and 10 strains of Y. bercovieri from human and porcine sources (including reference strains) were analyzed using amplified fragment length polymorphism (AFLP), a whole-genome fingerprinting method for subtyping bacterial isolates. AFLP typing distinguished the different Yersinia species examined. Representatives of Y. enterocolitica biotypes 1A, 1B, 2, 3, and 4 belonged to biotype-related AFLP clusters and were clearly distinguished from each other. Y. enterocolitica biotypes 2, 3, and 4 appeared to be more closely related to each other (83% similarity) than to biotypes 1A (11%) and 1B (47%). Biotype 1A strains exhibited the greatest genetic heterogeneity of the biotypes studied. The biotype 1A genotypes were distributed among four major clusters, each containing strains from both human and porcine sources, confirming the zoonotic potential of this organism. The AFLP technique is a valuable genotypic method for identification and typing of Y. enterocolitica and other Yersinia spp.
Resumo:
BACKGROUND: Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein-coding exons. METHODS: To improve DNA diagnostics for patients with Usher syndrome, we developed a genotyping microarray based on the arrayed primer extension (APEX) method. Allele-specific oligonucleotides corresponding to all 298 Usher syndrome-associated sequence variants known to date, 76 of which are novel, were arrayed. RESULTS: Approximately half of these variants were validated using original patient DNAs, which yielded an accuracy of >98%. The efficiency of the Usher genotyping microarray was tested using DNAs from 370 unrelated European and American patients with Usher syndrome. Sequence variants were identified in 64/140 (46%) patients with Usher syndrome type I, 45/189 (24%) patients with Usher syndrome type II, 6/21 (29%) patients with Usher syndrome type III and 6/20 (30%) patients with atypical Usher syndrome. The chip also identified two novel sequence variants, c.400C>T (p.R134X) in PCDH15 and c.1606T>C (p.C536S) in USH2A. CONCLUSION: The Usher genotyping microarray is a versatile and affordable screening tool for Usher syndrome. Its efficiency will improve with the addition of novel sequence variants with minimal extra costs, making it a very useful first-pass screening tool.
Resumo:
We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains.
Resumo:
A polymorphous variant of oligodendroglioma was described by K.J. Zülch half a century ago, and is only very sporadically referred to in the subsequent literature. In particular, no comprehensive analysis with respect to clinical or genetic features of these tumors is available. From a current perspective, the term polymorphous oligodendroglioma (pO) may appear as contradictory in terms, as nuclear monotony is a histomorphological hallmark of oligodendrogliomas. For the purpose of this study, we defined pO as diffusely infiltrating gliomas felt to be of oligodendroglial rather than astrocytic differentiation and characterized by the presence of multinucleate tumor giant cells and/or nuclear pleomorphism. In a total of nine patients, we identified tumors consistent with this working definition. All tumors were high-grade. We characterized these with respect to clinical, histomorphological and genetic features. Despite clinical and genetic heterogeneity, we identified a subset of tumors of bona fide oligodendroglial differentiation as characterized by combined loss of heterozygosity of chromosome arms 1p and 19q (LOH 1p19q). Those tumors that lacked LOH 1p19q showed a high frequency of IDH1 mutations and loss of alpha thalassemia/mental retardation syndrome X-linked gene (ATRX) immunoreactivity, indicating a possible phenotypic convergence of true oligodendrogliomas and gliomas of the alternative lengthening of telomeres (ALT) pathway. p53 alterations were common irrespective of the 1p19q status. Histomorphologically, the tumors featured interspersed bizarre multinucleate giant tumor cells, while the background population varied from monotonous to significantly pleomorphic. Our findings indicate, that a rare polymorphous - or "giant cell" - variant of oligodendroglioma does indeed exist.
Resumo:
The molecular analysis of genes influencing human height has been notoriously difficult. Genome-wide association studies (GWAS) for height in humans based on tens of thousands to hundreds of thousands of samples so far revealed ∼200 loci for human height explaining only 20% of the heritability. In domestic animals isolated populations with a greatly reduced genetic heterogeneity facilitate a more efficient analysis of complex traits. We performed a genome-wide association study on 1,077 Franches-Montagnes (FM) horses using ∼40,000 SNPs. Our study revealed two QTL for height at withers on chromosomes 3 and 9. The association signal on chromosome 3 is close to the LCORL/NCAPG genes. The association signal on chromosome 9 is close to the ZFAT gene. Both loci have already been shown to influence height in humans. Interestingly, there are very large intergenic regions at the association signals. The two detected QTL together explain ∼18.2% of the heritable variation of height in horses. However, another large fraction of the variance for height in horses results from ECA 1 (11.0%), although the association analysis did not reveal significantly associated SNPs on this chromosome. The QTL region on ECA 3 associated with height at withers was also significantly associated with wither height, conformation of legs, ventral border of mandible, correctness of gaits, and expression of the head. The region on ECA 9 associated with height at withers was also associated with wither height, length of croup and length of back. In addition to these two QTL regions on ECA 3 and ECA 9 we detected another QTL on ECA 6 for correctness of gaits. Our study highlights the value of domestic animal populations for the genetic analysis of complex traits.
Resumo:
Germline mutation testing in patients with colorectal cancer (CRC) is offered only to a subset of patients with a clinical presentation or tumor histology suggestive of familial CRC syndromes, probably underestimating familial CRC predisposition. The aim of our study was to determine whether unbiased screening of newly diagnosed CRC cases with next generation sequencing (NGS) increases the overall detection rate of germline mutations. We analyzed 152 consecutive CRC patients for germline mutations in 18 CRC-associated genes using NGS. All patients were also evaluated for Bethesda criteria and all tumors were investigated for microsatellite instability, immunohistochemistry for mismatch repair proteins and the BRAF*V600E somatic mutation. NGS based sequencing identified 27 variants in 9 genes in 23 out of 152 patients studied (18%). Three of them were already reported as pathogenic and 12 were class 3 germline variants with an uncertain prediction of pathogenicity. Only 1 of these patients fulfilled Bethesda criteria and had a microsatellite instable tumor and an MLH1 germline mutation. The others would have been missed with current approaches: 2 with a MSH6 premature termination mutation and 12 uncertain, potentially pathogenic class 3 variants in APC, MLH1, MSH2, MSH6, MSH3 and MLH3. The higher NGS mutation detection rate compared with current testing strategies based on clinicopathological criteria is probably due to the large genetic heterogeneity and overlapping clinical presentation of the various CRC syndromes. It can also identify apparently nonpenetrant germline mutations complicating the clinical management of the patients and their families.
Resumo:
The lifespan of plants ranges from a few weeks in annuals to thousands of years in trees. It is hard to explain such extreme longevity considering that DNA replication errors inevitably cause mutations. Without purging through meiotic recombination, the accumulation of somatic mutations will eventually result in mutational meltdown, a phenomenon known as Muller’s ratchet. Nevertheless, the lifespan of trees is limited more often by incidental disease or structural damage than by genetic aging. The key determinants of tree architecture are the axillary meristems, which form in the axils of leaves and grow out to form branches. The number of branches is low in annual plants, but in perennial plants iterative branching can result in thousands of terminal branches. Here, we use stem cell ablation and quantitative cell-lineage analysis to show that axillary meristems are set aside early, analogous to the metazoan germline. While neighboring cells divide vigorously, axillary meristem precursors maintain a quiescent state, with only 7–9 cell divisions occurring between the apical and axillary meristem. During iterative branching, the number of branches increases exponentially, while the number of cell divisions increases linearly. Moreover, computational modeling shows that stem cell arrangement and positioning of axillary meristems distribute somatic mutations around the main shoot, preventing their fixation and maximizing genetic heterogeneity. These features slow down Muller’s ratchet and thereby extend lifespan.
Resumo:
Background: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m similar to 0.094 - 0.097) in the Volta populations. Conclusions: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.
Resumo:
BACKGROUND: Testicular tumours are relatively uncommon in infants and children, accounting for only 1-2% of all paediatric solid tumours. Of these approximately 1.5% are Leydig-cell tumours. Further, activating mutations of the luteinizing hormone receptor gene (LHR), as well as of the G protein genes, such as Gsalpha (gsp) and Gialpha (gip2) subunits, and cyclin-dependent kinase gene 4(CDK4) have been associated with the development of several endocrine neoplasms. AIMS/METHODS: In this report, the clinical variability of Leydig-cell tumours in four children is described. The LHR-, gsp-, gip2- and CDK4 genes were investigated to establish the possible molecular pathogenesis of the variable phenotype of the Leydig-cell tumours. RESULTS: No activating mutations in these genes were found in the four Leydig-cell tumours studied. Therefore, the absence of activating mutations in LHR, as well as in both the 'hot spot' regions for activating mutations within the G-alpha subunits and in the regulatory 'hot spot' on the CDK4 genes in these tumours indicates molecular heterogeneity among Leydig-cell tumours. CONCLUSION: Four children with a variable phenotype caused by Leydig-cell tumours are described. A molecular analysis of all the 'activating' genes and mutational regions known so far was performed, but no abnormalities were found. The lessons learnt from these clinically variable cases are: perform ultrasound early and most importantly, consider discrepancies between testicular swelling, tumour size and androgen production.