5 resultados para GAUSSIAN GENERATOR FUNCTIONS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Several methods based on Kriging have recently been proposed for calculating a probability of failure involving costly-to-evaluate functions. A closely related problem is to estimate the set of inputs leading to a response exceeding a given threshold. Now, estimating such a level set—and not solely its volume—and quantifying uncertainties on it are not straightforward. Here we use notions from random set theory to obtain an estimate of the level set, together with a quantification of estimation uncertainty. We give explicit formulae in the Gaussian process set-up and provide a consistency result. We then illustrate how space-filling versus adaptive design strategies may sequentially reduce level set estimation uncertainty.
Resumo:
We present a novel approach for the reconstruction of spectra from Euclidean correlator data that makes close contact to modern Bayesian concepts. It is based upon an axiomatically justified dimensionless prior distribution, which in the case of constant prior function m(ω) only imprints smoothness on the reconstructed spectrum. In addition we are able to analytically integrate out the only relevant overall hyper-parameter α in the prior, removing the necessity for Gaussian approximations found e.g. in the Maximum Entropy Method. Using a quasi-Newton minimizer and high-precision arithmetic, we are then able to find the unique global extremum of P[ρ|D] in the full Nω » Nτ dimensional search space. The method actually yields gradually improving reconstruction results if the quality of the supplied input data increases, without introducing artificial peak structures, often encountered in the MEM. To support these statements we present mock data analyses for the case of zero width delta peaks and more realistic scenarios, based on the perturbative Euclidean Wilson Loop as well as the Wilson Line correlator in Coulomb gauge.
Resumo:
Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.
On degeneracy and invariances of random fields paths with applications in Gaussian process modelling
Resumo:
We study pathwise invariances and degeneracies of random fields with motivating applications in Gaussian process modelling. The key idea is that a number of structural properties one may wish to impose a priori on functions boil down to degeneracy properties under well-chosen linear operators. We first show in a second order set-up that almost sure degeneracy of random field paths under some class of linear operators defined in terms of signed measures can be controlled through the two first moments. A special focus is then put on the Gaussian case, where these results are revisited and extended to further linear operators thanks to state-of-the-art representations. Several degeneracy properties are tackled, including random fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process modelling. In a first numerical experiment, it is shown that dedicated kernels can be used to infer an axis of symmetry. Our second numerical experiment deals with conditional simulations of a solution to the heat equation, and it is found that adapted kernels notably enable improved predictions of non-linear functionals of the field such as its maximum.
Resumo:
The FANOVA (or “Sobol’-Hoeffding”) decomposition of multivariate functions has been used for high-dimensional model representation and global sensitivity analysis. When the objective function f has no simple analytic form and is costly to evaluate, computing FANOVA terms may be unaffordable due to numerical integration costs. Several approximate approaches relying on Gaussian random field (GRF) models have been proposed to alleviate these costs, where f is substituted by a (kriging) predictor or by conditional simulations. Here we focus on FANOVA decompositions of GRF sample paths, and we notably introduce an associated kernel decomposition into 4 d 4d terms called KANOVA. An interpretation in terms of tensor product projections is obtained, and it is shown that projected kernels control both the sparsity of GRF sample paths and the dependence structure between FANOVA effects. Applications on simulated data show the relevance of the approach for designing new classes of covariance kernels dedicated to high-dimensional kriging.