2 resultados para GAAS(001) SURFACES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microrough titanium (Ti) surfaces of dental implants have demonstrated more rapid and greater bone apposition when compared with machined Ti surfaces. However, further enhancement of osteoblastic activity and bone apposition by bio-functionalizing the implant surface with a monomolecular adsorbed layer of a co-polymer - i.e., poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its derivatives (PLL-g-PEG/PEG-peptide) - has never been investigated. The aim of the present study was to examine early bone apposition to a modified sandblasted and acid-etched (SLA) surface coated with an Arg-Gly-Asp (RGD)-peptide-modified polymer (PLL-g-PEG/PEG-RGD) in the maxillae of miniature pigs, and to compare it with the standard SLA surface. Test and control implants had the same microrough topography (SLA), but differed in their surface chemistry (polymer coatings). The following surfaces were examined histomorphometrically: (i) control - SLA without coating; (ii) (PLL-g-PEG); (iii) (PLL-g-PEG/PEG-RDG) (RDG, Arg-Asp-Gly); and (iv) (PLL-g-PEG/PEG-RGD). At 2 weeks, RGD-coated implants demonstrated significantly higher percentages of bone-to-implant contact as compared with controls (61.68% vs. 43.62%; P < 0.001). It can be concluded that the (PLL-g-PEG/PEG-RGD) coatings may promote enhanced bone apposition during the early stages of bone regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have shown similarities in the microflora between titanium implants or tooth sites when samples are taken by gingival crevicular fluid (GCF) sampling methods. The purpose of the present study was to study the microflora from curette and GCF samples using the checkerboard DNA-DNA hybridization method to assess the microflora of patients who had at least one oral osseo-integrated implant and who were otherwise dentate. Plaque samples were taken from tooth/implant surfaces and from sulcular gingival surfaces with curettes, and from gingival fluid using filter papers. A total of 28 subjects (11 females) were enrolled in the study. The mean age of the subjects was 64.1 years (SD+/-4.7). On average, the implants studied had been in function for 3.7 years (SD+/-2.9). The proportion of Streptococcus oralis (P<0.02) and Fusobacterium periodonticum (P<0.02) was significantly higher at tooth sites (curette samples). The GCF samples yielded higher proportions for 28/40 species studies (P-values varying between 0.05 and 0.001). The proportions of Tannerella forsythia (T. forsythensis), and Treponema denticola were both higher in GCF samples (P<0.02 and P<0.05, respectively) than in curette samples (implant sites). The microbial composition in gingival fluid from samples taken at implant sites differed partly from that of curette samples taken from implant surfaces or from sulcular soft tissues, providing higher counts for most bacteria studied at implant surfaces, but with the exception of Porphyromonas gingivalis. A combination of GCF and curette sampling methods might be the most representative sample method.