10 resultados para Gómez de Almodóvar, Pedro
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB(1)) is present at the membranes of mouse neuronal mitochondria (mtCB(1)), where it directly controls cellular respiration and energy production. Through activation of mtCB(1) receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB(1) receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppression of inhibition in the hippocampus. Thus, mtCB(1) receptors directly modulate neuronal energy metabolism, revealing a new mechanism of action of G protein-coupled receptor signaling in the brain.
Resumo:
INTRODUCTION Rhythm disturbances in children with structurally normal hearts are usually associated with abnormalities in cardiac ion channels. The phenotypic expression of these abnormalities ("channelopathies") includes: long and short QT syndromes, Brugada syndrome, congenital sick sinus syndrome, catecholaminergic polymorphic ventricular tachycardia, Lènegre-Lev disease, and/or different degrees of cardiac conduction disease. METHODS The study group consisted of three male patients with sick sinus syndrome, intraventricular conduction disease, and monomorphic sustained ventricular tachycardia. Clinical data and results of electrocardiography, Holter monitoring, electrophysiology, and echocardiography are described. RESULTS In all patients, the ECG during sinus rhythm showed right bundle branch block and long QT intervals. First-degree AV block was documented in two subjects, and J point elevation in one. A pacemaker was implanted in all cases due to symptomatic bradycardia (sick sinus syndrome). Atrial tachyarryhthmias were observed in two patients. The common characteristic ventricular arrhythmia was a monomorphic sustained ventricular tachycardia, inducible with ventricular stimulation and sensitive to lidocaine. In one patient, radiofrequency catheter ablation was successfully performed. No structural abnormalities were found in echocardiography in the study group. CONCLUSION Common clinical and ECG features suggest a common pathophysiology in this group of patients with congenital severe electrical disease.
Resumo:
Climate change alone influences future levels of tropospheric ozone and their precursors through modifications of gas-phase chemistry, transport, removal, and natural emissions. The goal of this study is to determine at what extent the modes of variability of gas-phase pollutants respond to different climate change scenarios over Europe. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for a target domain covering Europe. Two full-transient simulations covering from 1991–2050 under the SRES A2 and B2 scenarios driven by ECHO-G global circulation model have been compared. The results indicate that the spatial patterns of variability for tropospheric ozone are similar for both scenarios, but the magnitude of the change signal significantly differs for A2 and B2. The 1991–2050 simulations share common characteristics for their chemical behavior. As observed from the NO2 and α-pinene modes of variability, our simulations suggest that the enhanced ozone chemical activity is driven by a number of parameters, such as the warming-induced increase in biogenic emissions and, to a lesser extent, by the variation in nitrogen dioxide levels. For gas-phase pollutants, the general increasing trend for ozone found under A2 and B2 forcing is due to a multiplicity of climate factors, such as increased temperature, decreased wet removal associated with an overall decrease of precipitation in southern Europe, increased photolysis of primary and secondary pollutants as a consequence of lower cloudiness and increased biogenic emissions fueled by higher temperatures.
Resumo:
OBJECTIVE There is debate on how the methodological quality of clinical trials should be assessed. We compared trials of physical therapy (PT) judged to be of adequate quality based on summary scores from the Physiotherapy Evidence Database (PEDro) scale with trials judged to be of adequate quality by Cochrane Risk of Bias criteria. DESIGN Meta-epidemiological study within Cochrane Database of Systematic Reviews. METHODS Meta-analyses of PT trials were identified in the Cochrane Database of Systematic Reviews. For each trial PeDro and Cochrane assessments were extracted from the PeDro and Cochrane databases. Adequate quality was defined as adequate generation of random sequence, concealment of allocation, and blinding of outcome assessors (Cochrane criteria) or as trials with a PEDro summary score ≥5 or ≥6 points. We combined trials of adequate quality using random-effects meta-analysis. RESULTS Forty-one Cochrane reviews and 353 PT trials were included. All meta-analyses included trials with PEDro scores ≥5, 37 (90.2%) included trials with PEDro scores ≥6 and only 22 (53.7%) meta-analyses included trials of adequate quality according to the Cochrane criteria. Agreement between PeDro and Cochrane was poor for PeDro scores of ≥5 points (kappa = 0.12; 95% CI 0.07 to 0.16) and slight for ≥6 points (kappa 0.24; 95% CI 0.16-0.32). When combining effect sizes of trials deemed to be of adequate quality according to PEDro or Cochrane criteria, we found that a substantial difference in the combined effect size (≥0.15) was evident in 9 (22%) out of the 41 meta-analyses for PEDro cutoff ≥5 and 10 (24%) for cutoff ≥6. CONCLUSIONS The PeDro and Cochrane approaches lead to different sets of trials of adequate quality, and different combined treatment estimates from meta-analyses of these trials. A consistent approach to assessing RoB in trials of physical therapy should be adopted.