4 resultados para Fynbos Biome

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesize recent results from lake-sediment studies of Holocene fire-climate-vegetation interactions in Alaskan boreal ecosystems. At the millennial time scale, the most robust feature of these records is an increase in fire occurrence with the establishment of boreal forests dominated by Picea mariana: estimated mean fire-return intervals decreased from ≥300 yrs to as low as ∼80 yrs. This fire-vegetation relationship occurred at all sites in interior Alaska with charcoal-based fire reconstructions, regardless of the specific time of P. mariana arrival during the Holocene. The establishment of P. mariana forests was associated with a regional climatic trend toward cooler/wetter conditions. Because such climatic change should not directly enhance fire occurrence, the increase in fire frequency most likely reflects the influence of highly flammable P. mariana forests, which are more conducive to fire ignition and spread than the preceding vegetation types (tundra, and woodlands/forests dominated by Populus or Picea glauca). Increased lightning associated with altered atmospheric circulation may have also played a role in certain areas where fire frequency increased around 4000 calibrated years before present (BP) without an apparent increase in the abundance of P. mariana. When viewed together, the paleo-fire records reveal that fire histories differed among sites in the same modern fire regime and that the fire regime and plant community similar to those of today became established at different times. Thus the spatial array of regional fire regimes was non-static through the Holocene. However, the patterns and causes of the spatial variation remain largely unknown. Advancing our understanding of climate-fire-vegetation interactions in the Alaskan boreal biome will require a network of charcoal records across various ecoregions, quantitative paleoclimate reconstructions, and improved knowledge of how sedimentary charcoal records fire events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.