7 resultados para Fuzzy computing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Dieser Artikel bietet einen Überblick über die Entwicklung und Zusammenhänge der einzelnen Elemente der Fuzzy-Logik, wovon Fuzzy-Set-Theorie die Grundlage bildet. Die Grundproblematik besteht in der Handhabung von linguistischen Informationen, die häufig durch Ungenauigkeit gekennzeichnet sind. Die verschiedenen technischen Anwendungen von Fuzzy-Logik bieten eine Möglichkeit, intelligentere Computersysteme zu konstruieren, die mit unpräzisen Informationen umgehen können. Solche Systeme sind Indizien für die Entstehung einer neuen Ära des Cognitive-Computing, di in diesemArtikel ebenfalls zur Sprache kommt. Für das bessere Verständnis wird der Artikel mit einem Beispiel aus der Meteorologie (d. h. Schnee in Adelboden) begleitet.
Resumo:
Traditionally, ontologies describe knowledge representation in a denotational, formalized, and deductive way. In addition, in this paper, we propose a semiotic, inductive, and approximate approach to ontology creation. We define a conceptual framework, a semantics extraction algorithm, and a first proof of concept applying the algorithm to a small set of Wikipedia documents. Intended as an extension to the prevailing top-down ontologies, we introduce an inductive fuzzy grassroots ontology, which organizes itself organically from existing natural language Web content. Using inductive and approximate reasoning to reflect the natural way in which knowledge is processed, the ontology’s bottom-up build process creates emergent semantics learned from the Web. By this means, the ontology acts as a hub for computing with words described in natural language. For Web users, the structural semantics are visualized as inductive fuzzy cognitive maps, allowing an initial form of intelligence amplification. Eventually, we present an implementation of our inductive fuzzy grassroots ontology Thus,this paper contributes an algorithm for the extraction of fuzzy grassroots ontologies from Web data by inductive fuzzy classification.
Resumo:
This paper introduces a novel vision for further enhanced Internet of Things services. Based on a variety of data (such as location data, ontology-backed search queries, in- and outdoor conditions) the Prometheus framework is intended to support users with helpful recommendations and information preceding a search for context-aware data. Adapted from artificial intelligence concepts, Prometheus proposes user-readjusted answers on umpteen conditions. A number of potential Prometheus framework applications are illustrated. Added value and possible future studies are discussed in the conclusion.
Resumo:
This paper gives an insight into cognitive computing for smart cities, resulting in cognitive cities. Cognitive cities and cognitive computing research with the underlying concepts of knowledge graphs and fuzzy cognitive maps are presented and supported by existing tools (i.e., IBM Watson and Google Now) and intended tools (meta-app). The paper illustrates FCM as a suiting instrument to represent information/knowledge in a city environment driven by human-technology interaction, enforcing the concept of cognitive cities. A proposed paper prototype combines the findings of the paper and shows the next step in the implementation of the proposed meta-app.
Resumo:
The new computing paradigm known as cognitive computing attempts to imitate the human capabilities of learning, problem solving, and considering things in context. To do so, an application (a cognitive system) must learn from its environment (e.g., by interacting with various interfaces). These interfaces can run the gamut from sensors to humans to databases. Accessing data through such interfaces allows the system to conduct cognitive tasks that can support humans in decision-making or problem-solving processes. Cognitive systems can be integrated into various domains (e.g., medicine or insurance). For example, a cognitive system in cities can collect data, can learn from various data sources and can then attempt to connect these sources to provide real time optimizations of subsystems within the city (e.g., the transportation system). In this study, we provide a methodology for integrating a cognitive system that allows data to be verbalized, making the causalities and hypotheses generated from the cognitive system more understandable to humans. We abstract a city subsystem—passenger flow for a taxi company—by applying fuzzy cognitive maps (FCMs). FCMs can be used as a mathematical tool for modeling complex systems built by directed graphs with concepts (e.g., policies, events, and/or domains) as nodes and causalities as edges. As a verbalization technique we introduce the restriction-centered theory of reasoning (RCT). RCT addresses the imprecision inherent in language by introducing restrictions. Using this underlying combinatorial design, our approach can handle large data sets from complex systems and make the output understandable to humans.
Resumo:
Synchronizing mind maps with fuzzy cognitive maps can help to handle complex problems with many involved stakeholders by taking advantage of human creativity. The proposed approach has the capacity to instantiate cognitive cities by including cognitive computing. A use case in the context of decision-finding (concerning a transportation system) is presented to illustrate the approach.
Resumo:
This paper presents a conceptual approach to enhance knowledge management by synchronizing mind maps and fuzzy cognitive maps. The use of mind maps allows taking advantage of human creativity, while the application of fuzzy cognitive maps enables to store information expressed in natural language. By applying cognitive computing, it makes possible to gather and extract relevant information out of a data pool. Therefore, this approach is supposed to give a framework that enhances knowledge management. To demonstrate the potential of this framework, a use case concerning the development of a smart city app is presented.